Abstract
Both primary and secondary responses to sheep erythrocytes and to Brucella abortus antigen have been obtained in cultures of dispersed rabbit spleen cells. Removal of adherent cells by repeated incubation of spleen cells on absorbent cotton diminished the ability of the spleen cell suspensions to give secondary as well as primary responses in vitro. When comparing cultures made in dishes and in tubes, the loss of responsiveness after incubation on cotton was much more evident in the dish cultures. It was concluded that the cell-to-cell interaction needed for immune responses to particulate antigens in vitro was more readily interfered with when the cells were spread over a larger surface area. The proliferative response to antigen, as measured by uptake of 3H-thymidine in tube cultures of the sensitive spleen cells, appeared particularly resistant to the depletion effect of adherent cell removal. Dispersed spleen cells from sensitized mice gave a secondary response to sheep erythrocytes. This response was readily abolished by one incubation on absorbent cotton when the cells were cultured in dishes.
Full Text
The Full Text of this article is available as a PDF (612.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cline M. J., Swett V. C. The interaction of human monocytes and lymphocytes. J Exp Med. 1968 Dec 1;128(6):1309–1325. doi: 10.1084/jem.128.6.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. W., Jacobson E. B., Thorbecke G. J. Gamma-globulin and antibody formation in vitro. V. The secondary response made by splenic white and red pulp with reference to the role of secondary nodules. J Immunol. 1966 Jun;96(6):944–952. [PubMed] [Google Scholar]
- DUTTON R. W., EADY J. D. AN IN VITRO SYSTEM FOR THE STUDY OF THE MECHANISM OF ANTIGENIC STIMULATION IN THE SECONDARY RESPONSE. Immunology. 1964 Jan;7:40–53. [PMC free article] [PubMed] [Google Scholar]
- Dutton R. W., Mishell R. I. Cell populations and cell proliferation in the in vitro response of normal mouse spleen to heterologous erythrocytes. Analysis by the hot pulse technique. J Exp Med. 1967 Sep 1;126(3):443–454. doi: 10.1084/jem.126.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gery I., Benezra D., Davies A. M. The relationship between lymphocyte transformation and immune response. Immunology. 1969 Mar;16(3):381–386. [PMC free article] [PubMed] [Google Scholar]
- Harris G. Macrophages from tolerant rabbits as mediators of a specific immunological response in vitro. Immunology. 1967 Feb;12(2):159–163. [PMC free article] [PubMed] [Google Scholar]
- Hersh E. M., Harris J. E. Macrophage-lymphocyte interaction in the antigen-induced blastogenic response of human peripheral blood leukocytes. J Immunol. 1968 Jun;100(6):1184–1194. [PubMed] [Google Scholar]
- Jacobson E. B., Thorbecke G. J. Relationship of germinal centers in lymphoid tissue to immunologic memory. 3. Proliferative response of primed cells from splenic white and red pulp following reexposure to antigen in vitro. J Immunol. 1968 Sep;101(3):515–522. [PubMed] [Google Scholar]
- Jacobson E. B., Thorbecke G. J. Relationship of germinal centers in lymphoid tissue to immunologic memory. IV. Formation of 19S and 7S antibody by splenic white and red pulp during the secondary response in vitro. Lab Invest. 1968 Dec;19(6):635–642. [PubMed] [Google Scholar]
- MICHAELIDES M. C., COONS A. H. Studies on antibody production. V. The secondary response in vitro. J Exp Med. 1963 Jun 1;117:1035–1051. doi: 10.1084/jem.117.6.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills J. A. The immunologic significance of antigen induced lymphocyte transformation in vitro. J Immunol. 1966 Aug;97(2):239–247. [PubMed] [Google Scholar]
- Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moorhead J. F., Connolly J. J., McFarland W. Factors affecting the reactivity of human lymphocytes in vitro. I. Cell number, duration of culture and surface area. J Immunol. 1967 Aug;99(2):413–419. [PubMed] [Google Scholar]
- Mosier D. E. A requirement for two cell types for antibody formation in vitro. Science. 1967 Dec 22;158(3808):1573–1575. doi: 10.1126/science.158.3808.1573. [DOI] [PubMed] [Google Scholar]
- Mosier D. E. Cell interactions in the primary immune response in vitro: a requirement for specific cell clusters. J Exp Med. 1969 Feb 1;129(2):351–362. doi: 10.1084/jem.129.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppenheim J. J., Leventhal B. G., Hersh E. M. The transformation of column-purified lymphocytes with nonspecific and specific antigenic stimuli. J Immunol. 1968 Aug;101(2):262–267. [PubMed] [Google Scholar]
- Oppenheim J. J., Wolstencroft R. A., Gell P. G. Delayed hypersensitivity in the guinea-pig to a protein-hapten conjugate and its relationship to in vitro transformation of lymph node, spleen, thymus and peripheral blood lymphocytes. Immunology. 1967 Jan;12(1):89–102. [PMC free article] [PubMed] [Google Scholar]
- Pierce C. W. Immune responses in vitro. I. Cellular requirements for the immune response by nonprimed and primed spleen cells in vitro. J Exp Med. 1969 Aug 1;130(2):345–364. doi: 10.1084/jem.130.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plotz P. H., Talal N. Fractionation of splenic antibody-forming cells on glass bead columns. J Immunol. 1967 Dec;99(6):1236–1242. [PubMed] [Google Scholar]
- RICHARDSON M., DUTTON R. W. ANTIBODY SYNTHESIZING CELLS: APPEARANCE AFTER SECONDARY ANTIGENIC STIMULATION IN VITRO. Science. 1964 Oct 30;146(3644):655–656. doi: 10.1126/science.146.3644.655. [DOI] [PubMed] [Google Scholar]
- Roseman J. X-ray resistant cell required for the induction of in vitro antibody formation. Science. 1969 Sep 12;165(3898):1125–1127. doi: 10.1126/science.165.3898.1125. [DOI] [PubMed] [Google Scholar]