Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1970 May 1;131(5):894–916. doi: 10.1084/jem.131.5.894

IN VITRO STIMULATION OF ANTIBODY FORMATION BY PERITONEAL CELLS

I. PLAQUE TECHNIQUE OF HIGH SENSITIVITY ENABLING ACCESS TO THE CELLS

G J V Nossal 1, A E Bussard 1, H Lewis 1, J C Mazie 1
PMCID: PMC2138832  PMID: 4910143

Abstract

An improved method for the short-term culture of mouse peritoneal cells in a medium containing carboxymethylcellulose (CMC), sheep erythrocytes (SRBC), and guinea pig complement is described. It involves preparation of microcultures, of thickness 12–15 µ and volume 3.6 µl, under paraffin oil. With such cultures, peritoneal cells from normal, unimmunized young male CBA mice give about 3000 hemolytic plaques per million cells cultured, this figure being attained within 24 hr. The plaque detection method is about four times as sensitive as the Jerne technique. A method is described whereby such plaque-forming cells (PFC) can be transferred, by micromanipulation, to fresh monolayer cultures containing SRBC, CMC, and complement. In this fashion, the secretory capacity and susceptibility to inhibitors of peritoneal PFC can be tested in detail. Using this technique, evidence is presented that the hemolytic substance responsible for plaque formation is actually secreted by the cell at the center of the plaque, and is not a complement component but probably an antibody. Studies on the time of plaque appearance after cell transfer, and the subsequent growth rate of the zone of hemolysis, have been performed. They speak against the idea that the PFC is either a reservoir of cytophilic antibody or a "background" PFC. Rather they suggest that active antibody secretion is induced in the cell at some defined time point in culture. Detailed kinetics of the rate of appearance of plaques in peritoneal cell cultures revealed an exponential phase lasting from about 3 to about 13 hr with a doubling time of 2 hr. The reasons for this are not known. A greatly heightened reactivity was shown in peritoneal cells of mice that had been pregnant several times. Cultures of such cells showed more rapid plaque appearance and a peak activity about 20 times higher than with cells from young male mice. Cultures in which 1 cell in 10 formed a plaque were not infrequent. A series of experiments on germ-free mice showed reactivity similar to that of conventional mice from the same strain and source. The significance of the findings for cellular immunology are discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendinelli M., Wedderburn N. Haemolytic plaque formation by unimmunized mouse peritoneal lymphocytes. Nature. 1967 Jul 8;215(5097):157–158. doi: 10.1038/215157a0. [DOI] [PubMed] [Google Scholar]
  2. Bussard A. E., Lurie M. Primary antibody response in vitro in peritoneal cells. J Exp Med. 1967 May 1;125(5):873–892. doi: 10.1084/jem.125.5.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cunningham A. J. A method of increased sensitivity for detecting single antibody-forming cells. Nature. 1965 Sep 4;207(5001):1106–1107. doi: 10.1038/2071106a0. [DOI] [PubMed] [Google Scholar]
  4. Diener E., Armstrong W. D. Induction of antibody formation and tolerance in vitro to a purified protein antigen. Lancet. 1967 Dec 16;2(7529):1281–1285. doi: 10.1016/s0140-6736(67)90394-7. [DOI] [PubMed] [Google Scholar]
  5. Kennedy J. C., Siminovitch L., Till J. E., McCulloch E. A. A transplantation assay for mouse cells responsive to antigenic stimulation by sheep erythrocytes. Proc Soc Exp Biol Med. 1965 Dec;120(3):868–873. doi: 10.3181/00379727-120-30678. [DOI] [PubMed] [Google Scholar]
  6. Mishell R. I., Dutton R. W. Immunization of normal mouse spleen cell suspensions in vitro. Science. 1966 Aug 26;153(3739):1004–1006. doi: 10.1126/science.153.3739.1004. [DOI] [PubMed] [Google Scholar]
  7. Möller E., Lapp W. Cytotoxic effects in vitro by lymphoid cells from specifically tolerant animals. Immunology. 1969 Apr;16(4):561–566. [PMC free article] [PubMed] [Google Scholar]
  8. Pierpaoli W., Baroni C., Fabris N., Sorkin E. Hormones and immunological capacity. II. Reconstitution of antibody production in hormonally deficient mice by somatotropic hormone, thyrotropic hormone and thyroxin. Immunology. 1969 Feb;16(2):217–230. [PMC free article] [PubMed] [Google Scholar]
  9. Tao T. W., Uhr J. W. Primary-type antibody response in vitro. Science. 1966 Mar 4;151(3714):1096–1098. doi: 10.1126/science.151.3714.1096. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES