Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1970 May 1;131(5):981–1003. doi: 10.1084/jem.131.5.981

MACROPHAGE-MELANOCYTE HETEROKARYONS

I. PREPARATION AND PROPERTIES

Saimon Gordon 1, Zanvil Cohn 1
PMCID: PMC2138834  PMID: 4315306

Abstract

High yields of mouse macrophage-melanocyte heterokaryons and macrophage-macrophage homokaryons were obtained through the virus-induced fusion of cells spread on a glass surface. After fusion there was a striking reorganization of cellular architecture by means of a colcemid-sensitive process. Heterokaryons were isolated through the use of differential trypsinization and many underwent division to form melanocyte-like hybrids. The selective uptake of dextran sulfate by macrophages served as a useful cytoplasmic marker in identifying hybrids. Many characteristic macrophage properties were altered in the heterokaryons. Within an hour of fusion macrophage nuclei became swollen, nucleoli were more prominent, and increased nuclear RNA synthesis occurred. 3 hr after fusion, a wave of DNA synthesis took place in the previously dormant macrophage nuclei. The fate of typical macrophage markers was examined in both heterokaryons and homokaryons. Macrophage homokaryons continued to exhibit active phagocytosis of sensitized erythrocytes, whereas this capacity was lost irreversibly in heterokaryons. The loss of phagocytic activity of heterokaryons occurred at an exponential rate and was accelerated by high concentrations of calf serum. Another macrophage surface marker, a divalent cation-dependent adenosine triphosphatase (ATPase), could be demonstrated histochemically on heterokaryons. Shortly after fusion, it was present in discrete regions, but it became more diffuse and disappeared within a day. Acid phosphatase-positive secondary lysosomes and retractile lipid droplets disappeared from heterokaryons but continued to accumulate in macrophage homokaryons. These observations indicate that typical macrophage properties cease to be expressed in heterokaryons, and melanocyte functions presumably predominate in heterokaryons and hybrids.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHOPPIN P. W., OSTERHOUT S., TAMM I. Immunological characteristics of N.Y. strains of influenza A virus from the 1957 pandemic. Proc Soc Exp Biol Med. 1958 Jul;98(3):513–520. doi: 10.3181/00379727-98-24092. [DOI] [PubMed] [Google Scholar]
  2. Cohn Z. A. The structure and function of monocytes and macrophages. Adv Immunol. 1968;9:163–214. doi: 10.1016/s0065-2776(08)60443-5. [DOI] [PubMed] [Google Scholar]
  3. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davidson R., Ephrussi B., Yamamoto K. Regulation of melanin synthesis in mammalian cells, as studied by somatic hybridization. I. Evidence for negative control. J Cell Physiol. 1968 Oct;72(2):115–127. doi: 10.1002/jcp.1040720206. [DOI] [PubMed] [Google Scholar]
  5. Davidson R. Regulation of melanin synthesis in mammalian cells, as studied by somatic hybridization. 3. A method of increasing the frequency of cell fusion. Exp Cell Res. 1969 Jun;55(3):424–426. doi: 10.1016/0014-4827(69)90580-1. [DOI] [PubMed] [Google Scholar]
  6. Eliceiri G. L., Green H. Ribosomal RNA synthesis in human-mouse hybrid cells. J Mol Biol. 1969 Apr;41(2):253–260. doi: 10.1016/0022-2836(69)90390-8. [DOI] [PubMed] [Google Scholar]
  7. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harris H. Hybrid cells from mouse and man: a study. Proc R Soc Lond B Biol Sci. 1966 Dec 13;166(1004):358–368. doi: 10.1098/rspb.1966.0104. [DOI] [PubMed] [Google Scholar]
  9. Harris H., Sidebottom E., Grace D. M., Bramwell M. E. The expression of genetic information: a study with hybrid animal cells. J Cell Sci. 1969 Mar;4(2):499–525. doi: 10.1242/jcs.4.2.499. [DOI] [PubMed] [Google Scholar]
  10. Harris H., Watkins J. F., Ford C. E., Schoefl G. I. Artificial heterokaryons of animal cells from different species. J Cell Sci. 1966 Mar;1(1):1–30. doi: 10.1242/jcs.1.1.1. [DOI] [PubMed] [Google Scholar]
  11. Holmes K. V., Choppin P. W. On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J Cell Biol. 1968 Dec;39(3):526–543. doi: 10.1083/jcb.39.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lay W. H., Nussenzweig V. Ca++-dependent binding of antigen-19 S antibody complexes to macrophages. J Immunol. 1969 May;102(5):1172–1178. [PubMed] [Google Scholar]
  14. Moses H. L., Rosenthal A. S. Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J Histochem Cytochem. 1968 Aug;16(8):530–539. doi: 10.1177/16.8.530. [DOI] [PubMed] [Google Scholar]
  15. North R. J. The localization by electron microscopy of nucleoside phosphatase activity in guinea pig phagocytic cells. J Ultrastruct Res. 1966 Sep;16(1):83–95. doi: 10.1016/s0022-5320(66)80024-2. [DOI] [PubMed] [Google Scholar]
  16. Okada Y. Factors in fusion of cells by HVJ. Curr Top Microbiol Immunol. 1969;48:102–128. doi: 10.1007/978-3-642-46163-7_5. [DOI] [PubMed] [Google Scholar]
  17. ROIZMAN B. Polykaryocytosis. Cold Spring Harb Symp Quant Biol. 1962;27:327–342. doi: 10.1101/sqb.1962.027.001.031. [DOI] [PubMed] [Google Scholar]
  18. Rabinovitch M. Uptake of aldehyde-treated erythrocytes by L2 cells: inhibition by anti-red cell antibody or by coating the erythrocytes with purified proteins. Exp Cell Res. 1969 Feb;54(2):210–216. doi: 10.1016/0014-4827(69)90235-3. [DOI] [PubMed] [Google Scholar]
  19. Silagi S. Hybridization of a malignant melanoma cell line with L cells in vitro. Cancer Res. 1967 Nov;27(11):1953–1960. [PubMed] [Google Scholar]
  20. Virolainen M., Defendi V. Dependence of macrophage growth in vitro upon interaction with other cell types. Wistar Inst Symp Monogr. 1967;7:67–85. [PubMed] [Google Scholar]
  21. Watkins J. F., Grace D. M. Studies on the surface antigens of interspecific mammalian cell heterokaryons. J Cell Sci. 1967 Jun;2(2):193–204. doi: 10.1242/jcs.2.2.193. [DOI] [PubMed] [Google Scholar]
  22. van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES