Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1970 Jun 1;131(6):1137–1168. doi: 10.1084/jem.131.6.1137

DETECTION OF SIMULTANEOUS ANTIBODY SYNTHESIS IN PLASMA CELLS AND SPECIALIZED LYMPHOCYTES IN RABBIT LYMPH NODES

Stratis Avrameas 1, Elizabeth H Leduc 1
PMCID: PMC2138847  PMID: 5419269

Abstract

Antibody to horseradish peroxidase was localized by electron microscopic immunocytochemistry in cells of the popliteal lymph nodes of the rabbit after a single injection of antigen with complete Freund's adjuvant and after a second antigen administration. Synthesis of antibody, chiefly of 7S type, occurred simultaneously in two types of cells: large, clear, fixed, typical plasma cells, and small, dense, circulating cells which exhibit morphological characteristics of both small lymphocytes and plasma cells. We call the latter "lymphoplasmacytes" and propose that they arise from small lymphocytes. They secrete antibody by clasmatosis and continue to develop an elaborate endoplasmic reticulum after specific antibody synthesis ceases. In the presence of an additional antigenic stimulation, a second cycle of antibody synthesis may begin around the nucleus in the same cell, with antibody accumulating in the perinuclear space sometimes even before the previously synthesized antibody has been entirely secreted at the cell periphery. On this basis, we propose that the lymphoplasmacyte is a memory cell and that memory and antibody synthesis are two different activities of the same cell. The appearance of a small amount of 19S antibody may be correlated with the presence of a small number of antibody-containing, large lymphocytes.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S., Bouteille M. Ultrastructural localization of antibody by antigen label with peroxidase. Exp Cell Res. 1968 Oct;53(1):166–176. doi: 10.1016/0014-4827(68)90364-9. [DOI] [PubMed] [Google Scholar]
  2. Avrameas S., Taudou B., Chuilon S. Glutaraldehyde, cyanuric chloride and tetrazotized O-dianisidine as coupling reagents in the passive hemagglutination test. Immunochemistry. 1969 Jan;6(1):67–76. doi: 10.1016/0019-2791(69)90179-7. [DOI] [PubMed] [Google Scholar]
  3. Avrameas S., Ternynck T. The cross-linking of proteins with glutaraldehyde and its use for the preparation of immunoadsorbents. Immunochemistry. 1969 Jan;6(1):53–66. doi: 10.1016/0019-2791(69)90178-5. [DOI] [PubMed] [Google Scholar]
  4. BALFOUR B. M., COOPER E. H., ALPEN E. L. MORPHOLOGICAL AND KINETIC STUDIES ON ANTIBODY-PRODUCING CELLS IN RAT LYMPH NODES. Immunology. 1965 Mar;8:230–244. [PMC free article] [PubMed] [Google Scholar]
  5. Bosman C., Feldman J. D. Cytology of immunologic memory. A morphologic study of lymphoid cells during the anamnestic response. J Exp Med. 1968 Aug 1;128(2):293–307. doi: 10.1084/jem.128.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FREUND J. The mode of action of immunologic adjuvants. Bibl Tuberc. 1956;(10):130–148. [PubMed] [Google Scholar]
  7. Feldman J. D., Nordquist R. E. Immunologic competence of thoracic duct cells. II. Ultrastructure. Lab Invest. 1967 Apr;16(4):564–579. [PubMed] [Google Scholar]
  8. Gowans J. L., Uhr J. W. The carriage of immunological memory by small lymphocytes in the rat. J Exp Med. 1966 Nov 1;124(5):1017–1030. doi: 10.1084/jem.124.5.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  10. HARRIS T. N., HARRIS S. Histochemical changes in lymphocytes during the production of antibodies in lymph nodes of rabbits. J Exp Med. 1949 Aug 1;90(2):169–180. doi: 10.1084/jem.90.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris T. N., Hummeler K., Harris S. Electron microscopic observations on antibody-producing lymph node cells. J Exp Med. 1966 Jan 1;123(1):161–172. doi: 10.1084/jem.123.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hummeler K., Harris T. N., Tomassini N., Hechtel M., Farber M. B. Electron microscopic observations on antibody-producing cells in lymph and blood. J Exp Med. 1966 Aug 1;124(2):255–262. doi: 10.1084/jem.124.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leduc E. H., Avrameas S., Bouteille M. Ultrastructural localization of antibody in differentiating plasma cells. J Exp Med. 1968 Jan 1;127(1):109–118. doi: 10.1084/jem.127.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leduc E. H., Scott G. B., Avrameas S. Ultrastructural localization of intracellular immune globulins in plasma cells and lymphoblasts by enzyme-labeled antibodies. J Histochem Cytochem. 1969 Apr;17(4):211–224. doi: 10.1177/17.4.211. [DOI] [PubMed] [Google Scholar]
  15. Miller J. F. Interaction entre les cellules de lignée thymique et médullaire dans la réponse immunitaire. Rev Fr Etud Clin Biol. 1969 Jun-Jul;14(6):614–621. [PubMed] [Google Scholar]
  16. Nossal G. J., Austin C. M., Ada G. L. Antigens in immunity. VII. Analysis of immunological memory. Immunology. 1965 Oct;9(4):333–348. [PMC free article] [PubMed] [Google Scholar]
  17. SCHOENBERG M. D., STAVITSKY A. B., MOORE R. D., FREEMAN M. J. CELLULAR SITES OF SYNTHESIS OF RABBIT IMMUNOGLOBULINS DURING PRIMARY RESPONSE TO DIPTHERIA TOXOID-FREUND'S ADJUVANT. J Exp Med. 1965 Apr 1;121:577–590. doi: 10.1084/jem.121.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SCHOOLEY J. C. Autoradiographic observations of plasma cell formation. J Immunol. 1961 Mar;86:331–337. [PubMed] [Google Scholar]
  19. Sabet T. Y., Friedman H. Effects of RES "blockade" on antibody formation. II. Cytokinetics of the secondary haemolysin response and suppressed immunological "memory" in mice treated with carbon particles. Immunology. 1969 Oct;17(4):535–550. [PMC free article] [PubMed] [Google Scholar]
  20. Scott G., Avrameas S., Bernhard W. Etude au microscope électronique de la formation d'anticorps à l'aide de la phosphatase alcaline utilisée comme antigène. C R Acad Sci Hebd Seances Acad Sci D. 1968 Feb 12;266(7):746–748. [PubMed] [Google Scholar]
  21. Sercarz E. E., Byers V. S. The X-Y-Z scheme of immunocyte maturation. 3. Early IgM memory and the nature of the memory cell. J Immunol. 1967 Apr;98(4):836–843. [PubMed] [Google Scholar]
  22. Sterzl J. Immunological tolerance as the result of terminal differentiation of immunologically competent cells. Nature. 1966 Jan 22;209(5021):416–417. doi: 10.1038/209416a0. [DOI] [PubMed] [Google Scholar]
  23. Thiery J. P. Ultrastructure et fonctions des cellules impliquées dans la réaction immunitaire. Bull Soc Chim Biol (Paris) 1968 Sep 28;50(5):1077–1100. [PubMed] [Google Scholar]
  24. WISSLER R. W., FITCH F. W., LA VIA M. F., GUNDERSON C. H. The cellular basis for antibody formation. J Cell Physiol Suppl. 1957 Dec;50(Suppl 1):265–301. doi: 10.1002/jcp.1030500417. [DOI] [PubMed] [Google Scholar]
  25. Wigzell H. The rise and fall of 19S immunological memory against sheep red cells in the mouse. Ann Med Exp Biol Fenn. 1966;44(2):209–215. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES