Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1970 Oct 31;132(5):1035–1054. doi: 10.1084/jem.132.5.1035

MECHANISMS OF RECOVERY FROM A GENERALIZED VIRAL INFECTION: MOUSEPOX

I. THE EFFECTS OF ANTI-THYMOCYTE SERUM

R V Blanden 1
PMCID: PMC2138868  PMID: 4319373

Abstract

Agglutination and immunofluorescence tests in vitro showed that the ATS used in these experiments cross-reacted with macrophages and RBC. However, ATS was not toxic in vivo, and small doses given subcutaneously depleted thymus-dependent areas of lymphoid tissues and selectively depressed blood lymphocyte counts without affecting other cell types in the blood. Furthermore, the function of littoral macrophages as indicated by the clearance of blood-borne virus and its subsequent behavior over a 48 hr period in the liver and spleen was not changed by ATS. Thus, the innate resistance of these vital target organs was not depressed. A similar regimen of subcutaneous ATS caused a highly significant increase in mortality from mousepox with an associated failure to control virus growth in the liver and spleen which was manifest by 6 days after infection. The interferon and neutralizing antibody responses were not impaired in ATS-treated mice, but the cell-mediated immune response was significantly suppressed. This evidence, and consideration of the timing of these host responses during the course of infection in relation to the control of virus growth in the liver and spleen, led to the conclusion that cell-mediated immunity probably contributed an essential acquired recovery mechanism. However, no evidence was obtained concerning the nature of this antiviral mechanism.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARON S. MECHANISM OF RECOVERY FROM VIRAL INFECTION. Adv Virus Res. 1963;10:39–64. doi: 10.1016/s0065-3527(08)60696-x. [DOI] [PubMed] [Google Scholar]
  2. Blanden R. V., Lefford M. J., Mackaness G. B. The host response to Calmette-Guérin bacillus infection in mice. J Exp Med. 1969 May 1;129(5):1079–1107. doi: 10.1084/jem.129.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAIRNS J. The initiation of vaccinia infection. Virology. 1960 Jul;11:603–623. doi: 10.1016/0042-6822(60)90103-3. [DOI] [PubMed] [Google Scholar]
  4. FENNER F. Mouse-pox; infectious ectromelia of mice; a review. J Immunol. 1949 Dec;63(4):341–373. [PubMed] [Google Scholar]
  5. FENNER F. Studies in mousepox, infectious ectromelia of mice; quantitative investigations on the spread of virus through the host in actively and passively immunized animals. Aust J Exp Biol Med Sci. 1949 Jan;27(Pt 1):1–18. [PubMed] [Google Scholar]
  6. FENNER F. The pathogenesis of the acute exanthems; an interpretation based on experimental investigations with mousepox; infectious ectromelia of mice. Lancet. 1948 Dec 11;2(6537):915–920. doi: 10.1016/s0140-6736(48)91599-2. [DOI] [PubMed] [Google Scholar]
  7. FENNER F., WOODROOFE G. M. The pathogenesis of infectious myxomatosis; the mechanism of infection and the immunological response in the European rabbit (Oryctolagus cuniculus). Br J Exp Pathol. 1953 Aug;34(4):400–411. [PMC free article] [PubMed] [Google Scholar]
  8. GESSLER A. E., BENDER C. E., PARKINSON M. C. A new and rapid method for isolating viruses by selective fluorocarbon deproteinization. Trans N Y Acad Sci. 1956 Jun;18(8):701–703. doi: 10.1111/j.2164-0947.1956.tb00497.x. [DOI] [PubMed] [Google Scholar]
  9. Hirsch M. S., Murphy F. A., Hicklin M. D. Immunopathology of lymphocytic choriomeningitis viurs infection of newborn mice. Antithymocyte serum effects on glomerulonephritis and wasting disease. J Exp Med. 1968 Apr 1;127(4):757–766. doi: 10.1084/jem.127.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirsch M. S., Nahmias A. J., Murphy F. A., Kramer J. H. Cellular immunity in vaccinia infection of mice. Anti-thymocyte serum effects on primary and secondary responsiveness. J Exp Med. 1968 Jul 1;128(1):121–132. doi: 10.1084/jem.128.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jooste S. V., Lance E. M., Levey R. H., Medawar P. B., Ruszkiewicz M., Sharman R., Taub R. N. Notes on the preparation and assay of anti-lymphocytic serum for use in mice. Immunology. 1968 Nov;15(5):697–705. [PMC free article] [PubMed] [Google Scholar]
  12. Levey R. H., Medawar P. B. Nature and mode of action of antilymphocytic antiserum. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1130–1137. doi: 10.1073/pnas.56.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MIMS C. A. ASPECTS OF THE PATHOGENESIS OF VIRUS DISEASES. Bacteriol Rev. 1964 Mar;28:30–71. doi: 10.1128/br.28.1.30-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mackaness G. B., Blanden R. V. Cellular immunity. Prog Allergy. 1967;11:89–140. [PubMed] [Google Scholar]
  16. Mackaness G. B., Hill W. C. The effect of anti-lymphocyte globulin on cell-mediated reistance to infection. J Exp Med. 1969 May 1;129(5):993–1012. doi: 10.1084/jem.129.5.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin W. J., Miller J. F. Cell to cell interaction in the immune response. IV. Site of action of antilymphocyte globulin. J Exp Med. 1968 Oct 1;128(4):855–874. doi: 10.1084/jem.128.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Medawar P. Review lecture. Immunosuppressive agents, with special reference to antilymphocytic serum. Proc R Soc Lond B Biol Sci. 1969 Nov 18;174(1035):155–172. doi: 10.1098/rspb.1969.0086. [DOI] [PubMed] [Google Scholar]
  19. ROBERTS J. A. ENHANCEMENT OF THE VIRULENCE OF ATTENUATED ECTROMELIA VIRUS IN MICE MAINTAINED IN A COLD ENVIRONMENT. Aust J Exp Biol Med Sci. 1964 Dec;42:657–666. doi: 10.1038/icb.1964.63. [DOI] [PubMed] [Google Scholar]
  20. ROBERTS J. A. Histopathogenesis of mousepox. II. Cutaneous infection. Br J Exp Pathol. 1962 Oct;43:462–468. [PMC free article] [PubMed] [Google Scholar]
  21. SCHELL K. Studies on the innate resistance of mice to infection with mousepox. I. Resistance and antibody production. Aust J Exp Biol Med Sci. 1960 Aug;38:271–288. doi: 10.1038/icb.1960.29. [DOI] [PubMed] [Google Scholar]
  22. Sheagren J. N., Barth R. F., Edelin J. B., Malmgren R. A. Reticuloendothelial blockade produced by antilymphocyte serum. Lancet. 1969 Aug 9;2(7615):297–298. doi: 10.1016/s0140-6736(69)90057-9. [DOI] [PubMed] [Google Scholar]
  23. Subrahmanyan T. P. Effect of neonatal thymectomy and thiotepa on the susceptibility of mice to the lethal effects of poxviruses. Aust J Exp Biol Med Sci. 1968 Jun;46(3):267–272. doi: 10.1038/icb.1968.21. [DOI] [PubMed] [Google Scholar]
  24. Subrahmanyan T. P., Mims C. A. Fate of intravenously administered interferon and the distribution of interferon during virus infections in mice. Br J Exp Pathol. 1966 Apr;47(2):168–176. [PMC free article] [PubMed] [Google Scholar]
  25. Taub R. N., Lance E. M. Histopathological effects in mice of heterologous antilymphocyte serum. J Exp Med. 1968 Dec 1;128(6):1281–1307. doi: 10.1084/jem.128.6.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Turk J. L. Cytology of the induction of hypersensitivity. Br Med Bull. 1967 Jan;23(1):3–8. doi: 10.1093/oxfordjournals.bmb.a070511. [DOI] [PubMed] [Google Scholar]
  27. Turk J. L., Willoughby D. A. Central and peripheral effects of anti-lymphocyte sera. Lancet. 1967 Feb 4;1(7484):249–251. doi: 10.1016/s0140-6736(67)91307-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES