Abstract
Macrophages restrict herpes simplex virus replication and can prevent the development of herpetic disease in mice. In an attempt to define the nature of this restriction, an analysis of virus-specified macromolecular syntheses in infected macrophages was undertaken. The significant results were the following: All cells were killed, but the infection was considered to be abortive since the level of infectious virus in macrophage cultures dropped steadily to a level beyond detection by 25 hr after infection. This restriction appeared to be specific for macrophages; the virus replicated efficiently in other mouse cells. DNA with a density characteristic for herpes simplex virus DNA was extracted from infected cultures, and the proportion of macrophages synthesizing DNA increased from less than 1% to greater than 50% by 6 hr after infection. Studies employing polyacrylamide gel electrophoresis indicated that the major viral-specific proteins were induced in macrophage cultures. In addition, all cells showing cytopathic changes characteristic of herpes virus infection also contained viral antigens which could be detected by fluorescent antibody techniques and, by 15 hr after infection, most contained nascent capsids lacking central dense cores. It is suggested that an error in DNA metabolism may be the primary cause of restriction.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett B. Isolation and cultivation in vitro of macrophages from various sources in the mouse. Am J Pathol. 1966 Jan;48(1):165–181. [PMC free article] [PubMed] [Google Scholar]
- COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cok M. L., Stevens J. G. Replication of varicella-zoste virus in cell culture: an ultrastructural study. J Ultrastruct Res. 1970 Aug;32(3):334–350. doi: 10.1016/s0022-5320(70)80014-4. [DOI] [PubMed] [Google Scholar]
- Cook M. L., Stevens J. G. Labile coat: reason for noninfectious cell-free varicella-zoster virus in culture. J Virol. 1968 Dec;2(12):1458–1464. doi: 10.1128/jvi.2.12.1458-1464.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gresser I., Lang D. J. Relationships between viruses and leucocytes. Prog Med Virol. 1966;8:62–130. [PubMed] [Google Scholar]
- HOGGAN M. D., ROIZMAN B. The isolation and properties of a variant of Herpes simplex producing multinucleated giant cells in monolayer cultures in the presence of antibody. Am J Hyg. 1959 Sep;70:208–219. doi: 10.1093/oxfordjournals.aje.a120071. [DOI] [PubMed] [Google Scholar]
- Hirsch M. S., Zisman B., Allison A. C. Macrophages and age-dependent resistance to Herpes simplex virus in mice. J Immunol. 1970 May;104(5):1160–1165. [PubMed] [Google Scholar]
- JOHNSON R. T. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS. II. A CELLULAR BASIS FOR THE DEVELOPMENT OF RESISTANCE WITH AGE. J Exp Med. 1964 Sep 1;120:359–374. doi: 10.1084/jem.120.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAPLAN A. S. A study of the herpes simplex virus-rabbit kidney cell system by the plaque technique. Virology. 1957 Dec;4(3):435–457. doi: 10.1016/0042-6822(57)90078-8. [DOI] [PubMed] [Google Scholar]
- MIMS C. A. ASPECTS OF THE PATHOGENESIS OF VIRUS DISEASES. Bacteriol Rev. 1964 Mar;28:30–71. doi: 10.1128/br.28.1.30-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan C., Rose H. M., Mednis B. Electron microscopy of herpes simplex virus. I. Entry. J Virol. 1968 May;2(5):507–516. doi: 10.1128/jvi.2.5.507-516.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nii S., Rosenkranz H. S., Morgan C., Rose H. M. Electron microscopy of herpes simplex virus. 3. Effect of hydroxyurea. J Virol. 1968 Oct;2(10):1163–1171. doi: 10.1128/jvi.2.10.1163-1171.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olitsky P. K., Schlesinger R. W. EFFECT OF LOCAL EDEMA AND INFLAMMATION IN THE SKIN OF THE MOUSE ON THE PROGRESSION OF HERPES VIRUS. Science. 1941 Jun 13;93(2424):574–575. doi: 10.1126/science.93.2424.574. [DOI] [PubMed] [Google Scholar]
- RUSSELL W. C., CRAWFORD L. V. PROPERTIES OF THE NUCLEIC ACIDS FROM SOME HERPES GROUP VIRUSES. Virology. 1964 Feb;22:288–292. doi: 10.1016/0042-6822(64)90017-0. [DOI] [PubMed] [Google Scholar]
- Roizman B., Spear P. G. Preparation of herpes simplex virus of high titer. J Virol. 1968 Jan;2(1):83–84. doi: 10.1128/jvi.2.1.83-84.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STEVENS J. G., GROMAN N. B. PROPERTIES OF INFECTIOUS BOVINE RHINOTRACHEITIS VIRUS IN A QUANTITATED VIRUS-CELL CULTURE SYSTEM. Am J Vet Res. 1963 Nov;24:1158–1163. [PubMed] [Google Scholar]
- Spear P. G., Roizman B. The proteins specified by herpes simplex virus. I. Time of synthesis, transfer into nuclei, and properties of proteins made in productively infected cells. Virology. 1968 Dec;36(4):545–555. doi: 10.1016/0042-6822(68)90186-4. [DOI] [PubMed] [Google Scholar]
- Stevens J. G., Kado-Boll G. J., Haven C. B. Changes in nuclear basic proteins during pseudorabies virus infection. J Virol. 1969 May;3(5):490–497. doi: 10.1128/jvi.3.5.490-497.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zisman B., Hirsch M. S., Allison A. C. Selective effects of anti-macrophage serum, silica and anti-lymphocyte serum on pathogenesis of herpes virus infection of young adult mice. J Immunol. 1970 May;104(5):1155–1159. [PubMed] [Google Scholar]