Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Jan 31;133(2):216–230. doi: 10.1084/jem.133.2.216

CELLULAR BASIS OF THE GENETIC CONTROL OF IMMUNE RESPONSES TO SYNTHETIC POLYPEPTIDES

II. FREQUENCY OF IMMUNOCOMPETENT PRECURSORS SPECIFIC FOR TWO DISTINCT REGIONS WITHIN (PHE, G)-PRO--L, A SYNTHETIC POLYPEPTIDE DERIVED FROM MULTICHAIN POLYPROLINE, IN INBRED MOUSE STRAINS

G M Shearer 1, Edna Mozes 1, Michael Sela 1
PMCID: PMC2138900  PMID: 4109112

Abstract

DBA/1 mice are high responders to the (Phe, G) determinant of the synthetic polypeptide (Phe, G)-Pro--L, whereas SJL mice respond well to the Pro--L region of this macromolecule (6). In order to determine whether the phenomenon described above is related to the number of antigen-sensitive units detected for both specificities, and whether responses to these determinants can be transferred independently, graded and limiting inocula of spleen cells from SJL, DBA/1, and F1 donors were injected into X-irradiated, syngeneic, recipient mice with (Phe, G)-Pro--L. By this approach, one antigen-sensitive unit specific for (Phe, G) was detected in 1.7 x 106 and 8.5 x 106 spleen cells from immunized and nonimmunized DBA/1 donors, respectively. In contrast, one (Phe, G) relevant precursor was detected in 20 x 106 SJL spleen cells, irrespective of whether the donors had been immunized. On the other hand, for the Pro--L specificity, one limiting splenic precursor was found in 1.3 x 106 and in 3.4 x 106 cells for immunized and nonimmunized SJL donors, respectively; whereas one response unit was estimated for this determinant in 9.4 x 106 and in 38 x 106 spleen cells from immunized and nonimmunized DBA/1 mice. The findings reported here indicate that the phenotypic expression of the genetic control(s) for immune responsiveness to different immunopotent regions of (Phe, G)-Pro--L is directly correlated with the number of immunocompetent response units detected in two inbred mouse strains. In the spleens of immunized F1 donors, similar frequencies of one limiting precursor in 3.0 x 106 and in 2.8 x 106 cells were detected for (Phe, G) and Pro--L, respectively. The results of a chi-square test for independence of (Phe, G) and Pro--L responses in F1 animals is compatible with the hypothesis that the transferred spleen cells limiting the response to (Phe, G)-Pro--L are restricted to generate antibodies specific for only one of the two determinants of this macromolecule.

Full Text

The Full Text of this article is available as a PDF (770.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdou N. I., Richter M. Cells involved in the immune response. X. The transfer of antibody-forming capacity to irradiated rabbits by antigen-reactive cells isolated from normal allogeneic rabbit bone marrow after passage through antigen-sensitized glass bead columns. J Exp Med. 1969 Jul 1;130(1):141–163. doi: 10.1084/jem.130.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foerster J., Green I., Lamelin J. P., Benacerraf B. Transfer of responsiveness to hapten conjugates of poly-L-lysine and of a copolymer of L-glutamic acid and L-lysine to lethally irradiated nonresponder guinea pigs by bone marrow or lymph node and spleen cells from responder guinea pigs. J Exp Med. 1969 Nov 1;130(5):1107–1122. doi: 10.1084/jem.130.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fuchs S., Sela M. Antigenicity of some new synthetic polypeptides and polypeptidyl gelatins. Biochem J. 1964 Dec;93(3):566–572. doi: 10.1042/bj0930566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jaton J. C., Sela M. Role of optical configuration in the immunogenicity and specificity of synthetic antigens derived from multichain polyproline. J Biol Chem. 1968 Nov 10;243(21):5616–5626. [PubMed] [Google Scholar]
  5. McDevitt H. O., Benacerraf B. Genetic control of specific immune responses. Adv Immunol. 1969;11:31–74. doi: 10.1016/s0065-2776(08)60477-0. [DOI] [PubMed] [Google Scholar]
  6. McDevitt H. O., Sela M. Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice. J Exp Med. 1965 Sep 1;122(3):517–531. doi: 10.1084/jem.122.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McDevitt H. O., Sela M. Genetic control of the antibody response. II. Further analysis of the specificity of determinant-specific control, and genetic analysis of the response to (H,G)-A--L in CBA and C57 mice. J Exp Med. 1967 Nov 1;126(5):969–978. doi: 10.1084/jem.126.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McDevitt H. O., Tyan M. L. Genetic control of the antibody response in inbred mice. Transfer of response by spleen cells and linkage to the major histocompatibility (H-2) locus. J Exp Med. 1968 Jul 1;128(1):1–11. [PMC free article] [PubMed] [Google Scholar]
  9. Miller J. F., Mitchell G. F. The thymus and the precursors of antigen reactive cells. Nature. 1967 Nov 18;216(5116):659–663. doi: 10.1038/216659a0. [DOI] [PubMed] [Google Scholar]
  10. Mozes E., McDevitt H. O., Jaton J. C., Sela M. The genetic control of antibody specificity. J Exp Med. 1969 Dec 1;130(6):1263–1278. doi: 10.1084/jem.130.6.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mozes E., McDevitt H. O., Jaton J. C., Sela M. The nature of the antigenic determinant in a genetic control of the antibody response. J Exp Med. 1969 Sep 1;130(3):493–504. doi: 10.1084/jem.130.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mozes E., Shearer G. M., Sela M. Cellular basis of the genetic control of immune responses to synthetic polypeptides. I. Differences in frequency of splenic precursor cells specific for a synthetic polypeptide derived from multichain polyproline ((T,G)-Pro--L) in high and low responder inbred mouse strains. J Exp Med. 1970 Oct 1;132(4):613–622. doi: 10.1084/jem.132.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Osoba D. Restriction of the capacity to respond to two antigens by single precursors of antibody-producing cells in culture. J Exp Med. 1969 Jan 1;129(1):141–152. doi: 10.1084/jem.129.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PORTER E. H., BERRY R. J. THE EFFICIENT DESIGN OF TRANSPLANTABLE TUMOUR ASSAYS. Br J Cancer. 1963 Dec;17:583–595. doi: 10.1038/bjc.1963.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Playfair J. H. Strain differences in the immune response of mice. II. Responses by neonatal cells in irradiated adult hosts. Immunology. 1968 Dec;15(6):815–826. [PMC free article] [PubMed] [Google Scholar]
  16. Shearer G. M., Cudkowicz G., Connell M. S., Priore R. L. Cellular differentiation of the immune system of mice. I. Separate splenic antigen-sensitive units for different types of anti-sheep antibody-forming cells. J Exp Med. 1968 Sep 1;128(3):437–457. doi: 10.1084/jem.128.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES