Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Jun 1;133(6):1334–1355. doi: 10.1084/jem.133.6.1334

THE GIX SYSTEM

A CELL SURFACE ALLO-ANTIGEN ASSOCIATED WITH MURINE LEUKEMIA VIRUS; IMPLICATIONS REGARDING CHROMOSOMAL INTEGRATION OF THE VIRAL GENOME

Elisabeth Stockert 1, Lloyd J Old 1, Edward A Boyse 1
PMCID: PMC2138928  PMID: 5576334

Abstract

This report concerns a cell surface antigen (GIX; G = Gross) which exhibits mendelian inheritance but which also appears de novo in cells that become productively infected with MuLV (Gross), the wild-type leukemia virus of the mouse. In normal mice, GIX is a cell surface allo-antigen confined to lymphoid cells and found in highest amount on thymocytes. Four categories of inbred mouse strains can be distinguished according to how much GIX antigen is expressed on their thymocytes. GIX - strains have none; in the three GIX + categories, GIX 3, GIX 2, and GIX 1, the amounts of GIX antigen present (per thymocyte) are approximately in the ratios 3:2:1. A study of segregating populations derived mainly from strain 129 (the prototype GIX 3 strain) and C57BL/6 (the prototype GIX - strain) revealed that two unlinked chromosomal genes are required for expression of GIX on normal lymphoid cells. The phenotype GIX + is expressed only when both genes are present, as in 129 mice. C57BL/6 carries neither of them. At one locus, expression of GIX is fully dominant over nonexpression (GIX fully expressed in heterozygotes). At the second locus, which is linked with H-2 (at a distance of 36.4 ± 2.7 units) in group IX (locus symbol GIX), expression is semidominant (50% expression of GIX in heterozygotes); gene order T:H-2:Tla:GIX. As a rule, when cells of GIX - mice or rats become overtly infected with MuLV (Gross), an event which occurs spontaneously in older mice of certain strains and which also commonly accompanies malignant transformation, their phenotype is converted to GIX +. This invites comparison with the emergence of TL+ leukemia cells in TL- mouse strains which has been observed in previous studies and which implies that TL- → TL+ conversion has accompanied leukemic transformation of such cells. So far the only example of GIX - → GIX + conversion taking place without overt MuLV infection is represented by the occurrence of GCSA-:GIX + myelomas in BALB/c (GCSA:GIX -) mice. Unlike the other Gross cell surface antigen described earlier, GCSA, which is invariably associated with MuLV (Gross) infection and never occurs in its absence, GIX antigen sometimes occurs independently of productive MuLV infection; for example, thymocytes and some leukemias of 129 mice are GCSA-:GIX +, and MuLV-producing sarcomas may be GCSA+:GIX -. The frequent emergence of cells of GIX + phenotype in all mouse strains implies that the structural gene coding for GIX antigen is common to all mice. There is precedent for this in the TL system, in which two of the Tla genes in linkage group IX appear to be ubiquitous among mice, but are normally expressed only in strains of mice carrying a second (expression) gene. It is not yet certain whether either of the two segregating genes belongs to the MuLV genome rather than to the cellular genome. This leaves the question whether MuLV may have a chromosomal integration site still debatable. But there is a good prospect that further genetic analysis will provide the answer and so elucidate the special relationship of leukemia viruses to the cells of their natural hosts.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A., Hartley J. W., Todaro G. J. Mouse leukemia virus: "spontaneous" release by mouse embryo cells after long-term in vitro cultivation. Proc Natl Acad Sci U S A. 1969 Sep;64(1):87–94. doi: 10.1073/pnas.64.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abelev G. I., Elgort D. A. Group-specific antigen of murine leukemia viruses in mice of low-leukemic strains. Int J Cancer. 1970 Sep 15;6(2):145–152. doi: 10.1002/ijc.2910060202. [DOI] [PubMed] [Google Scholar]
  3. Aoki T., Boyse E. A., Old L. J., De Harven E., Hämmerling U., Wood H. A. G (Gross) and H-2 cell-surface antigens: location on Gross leukemia cells by electron microscopy with visually labeled antibody. Proc Natl Acad Sci U S A. 1970 Mar;65(3):569–576. doi: 10.1073/pnas.65.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aoki T., Boyse E. A., Old L. J. Wild-type Gross leukemia virus. II. Influence of immunogenetic factors on natural transmission and on the consequences of infection. J Natl Cancer Inst. 1968 Jul;41(1):97–101. [PubMed] [Google Scholar]
  5. BOYSE E. A., OLD L. J., CHOUROULINKOV I. CYTOTOXIC TEST FOR DEMONSTRATION OF MOUSE ANTIBODY. Methods Med Res. 1964;10:39–47. [PubMed] [Google Scholar]
  6. Bailey D. W. Heritable histocompatibility changes: lysogeny in mice? Transplantation. 1966 Jul;4(4):482–488. doi: 10.1097/00007890-196607000-00012. [DOI] [PubMed] [Google Scholar]
  7. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970 Jun 27;226(5252):1209–1211. doi: 10.1038/2261209a0. [DOI] [PubMed] [Google Scholar]
  8. Bentvelzen P., Daams J. H., Hageman P., Calafat J. Genetic transmission of viruses that incite mammary tumor in mice. Proc Natl Acad Sci U S A. 1970 Sep;67(1):377–384. doi: 10.1073/pnas.67.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boyse E. A., Hubbard L., Stockert E., Lamm M. E. Improved complementation in the cytotoxic test. Transplantation. 1970 Nov;10(5):446–449. doi: 10.1097/00007890-197011000-00019. [DOI] [PubMed] [Google Scholar]
  10. Boyse E. A., Miyazawa M., Aoki T., Old L. J. Ly-A and Ly-B: two systems of lymphocyte isoantigens in the mouse. Proc R Soc Lond B Biol Sci. 1968 Jun 11;170(1019):175–193. doi: 10.1098/rspb.1968.0032. [DOI] [PubMed] [Google Scholar]
  11. Burger M. M. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci U S A. 1969 Mar;62(3):994–1001. doi: 10.1073/pnas.62.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fink M. A., Sibal L. R., Wivel N. A., Cowles C. A., O'Conner T. E. Some characteristics of an isolated group antigen common to most strains of murine leukemia virus. Virology. 1969 Apr;37(4):605–614. doi: 10.1016/0042-6822(69)90278-5. [DOI] [PubMed] [Google Scholar]
  13. GROSS L. Pathogenic properties, and "vertical" transmission of the mouse leukemia agent. Proc Soc Exp Biol Med. 1951 Oct;78(1):342–348. doi: 10.3181/00379727-78-19068. [DOI] [PubMed] [Google Scholar]
  14. Geering G., Old L. J., Boyse E. A. Antigens of leukemias induced by naturally occurring murine leukemia virus: their relation to the antigens of gross virus and other murine leukemia viruses. J Exp Med. 1966 Oct 1;124(4):753–772. doi: 10.1084/jem.124.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green M., Rokutanda M., Fujinaga K., Ray R. K., Rokutanda H., Gurgo C. Mechanism of carcinogenesis by RNA tumor viruses. I. An RNA-dependent DNA polymerase in murine sarcoma viruses. Proc Natl Acad Sci U S A. 1970 Sep;67(1):385–393. doi: 10.1073/pnas.67.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gregoriades A., Old L. J. Isolation and some characteristics of a group-specific antigen of the murine leukemia viruses. Virology. 1969 Feb;37(2):189–202. doi: 10.1016/0042-6822(69)90198-6. [DOI] [PubMed] [Google Scholar]
  17. HUEBNER R. J., ARMSTRONG D., OKUYAN M., SARMA P. S., TURNER H. C. SPECIFIC COMPLEMENT-FIXING VIRAL ANTIGENS IN HAMSTER AND GUINEA PIG TUMORS INDUCED BY THE SCHMIDT-RUPPIN STRAIN OF AVIAN SARCOMA. Proc Natl Acad Sci U S A. 1964 May;51:742–750. doi: 10.1073/pnas.51.5.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartley J. W., Rowe W. P., Capps W. I., Huebner R. J. Isolation of naturally occurring viruses of the murine leukemia virus group in tissue culture. J Virol. 1969 Feb;3(2):126–132. doi: 10.1128/jvi.3.2.126-132.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huebner R. J., Kelloff G. J., Sarma P. S., Lane W. T., Turner H. C., Gilden R. V., Oroszlan S., Meier H., Myers D. D., Peters R. L. Group-specific antigen expression during embryogenesis of the genome of the C-type RNA tumor virus: implications for ontogenesis and oncogenesis. Proc Natl Acad Sci U S A. 1970 Sep;67(1):366–376. doi: 10.1073/pnas.67.1.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huebner R. J. The murine leukemia-sarcoma virus complex. Proc Natl Acad Sci U S A. 1967 Sep;58(3):835–842. doi: 10.1073/pnas.58.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huebner R. J., Todaro G. J. Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1087–1094. doi: 10.1073/pnas.64.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Igel H. J., Huebner R. J., Turner H. C., Kotin P., Falk H. L. Mouse leukemia virus activation by chemical carcinogens. Science. 1969 Dec 26;166(3913):1624–1626. doi: 10.1126/science.166.3913.1624. [DOI] [PubMed] [Google Scholar]
  23. KIRSTEN W. H., PLATZ C. E. EARLY AND LATE LEUKEMIAS IN RATS AFTER TRANSPLANTATION OF LEUKEMIC CELLS FROM AKR MICE. Cancer Res. 1964 Jul;24:1056–1062. [PubMed] [Google Scholar]
  24. Kaplan H. S. On the natural history of the murine leukemias: presidential address. Cancer Res. 1967 Aug;27(8):1325–1340. [PubMed] [Google Scholar]
  25. LILLY F., BOYSE E. A., OLD L. J. GENETIC BASIS OF SUSCEPTIBILITY TO VIRAL LEUKAEMOGENESIS. Lancet. 1964 Dec 5;2(7371):1207–1209. doi: 10.1016/s0140-6736(64)91043-8. [DOI] [PubMed] [Google Scholar]
  26. Lilly F. The inheritance of susceptibility to the Gross leukemia virus in mice. Genetics. 1966 Mar;53(3):529–539. doi: 10.1093/genetics/53.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lilly F. The role of genetics in Gross virus leukemogenesis. Bibl Haematol. 1970;(36):213–220. doi: 10.1159/000391710. [DOI] [PubMed] [Google Scholar]
  28. Nowinski R. C., Old L. J., Boyse E. A., de Harven E., Geering G. Group-specific viral antigens in the milk and tissues of mice naturally infected with mammary tumor virus or Gross leukemia virus. Virology. 1968 Apr;34(4):617–629. doi: 10.1016/0042-6822(68)90083-4. [DOI] [PubMed] [Google Scholar]
  29. Nowinski R. C., Old L. J., Sarkar N. H., Moore D. H. Common properties of the oncogenic RNA viruses (oncornaviruses). Virology. 1970 Dec;42(4):1152–1157. doi: 10.1016/0042-6822(70)90367-3. [DOI] [PubMed] [Google Scholar]
  30. Old L. J., Boyse E. A. Antigens of tumors and leukemias induced by viruses. Fed Proc. 1965 Sep-Oct;24(5):1009–1017. [PubMed] [Google Scholar]
  31. Old L. J., Boyse E. A., Geering G., Oettgen H. F. Serologic approaches to the study of cancer in animals and in man. Cancer Res. 1968 Jul;28(7):1288–1299. [PubMed] [Google Scholar]
  32. Old L. J., Boyse E. A., Stockert E. The G (Gross) leukemia antigen. Cancer Res. 1965 Jul;25(6):813–819. [PubMed] [Google Scholar]
  33. Old L. J., Stockert E., Boyse E. A., Geering G. A study of passive immunization against a transplanted G+ leukemia with specific antiserum. Proc Soc Exp Biol Med. 1967 Jan;124(1):63–68. doi: 10.3181/00379727-124-31667. [DOI] [PubMed] [Google Scholar]
  34. Oroszlan S., Fisher C. L., Stanley T. B., Gilden R. V. Proteins of the murine C-type RNA tumour viruses: isolation of a group-specific antigen by isoelectric focusing. J Gen Virol. 1970 Jul;8(1):1–10. doi: 10.1099/0022-1317-8-1-1. [DOI] [PubMed] [Google Scholar]
  35. Payne L. N., Chubb R. C. Studies on the nature and genetic control of an antigen in normal chick embryos which reacts in the COFAL test. J Gen Virol. 1968 Dec;3(3):379–391. doi: 10.1099/0022-1317-3-3-379. [DOI] [PubMed] [Google Scholar]
  36. SLETTENMARK B., KLEIN E. Cytotoxic and neutralization tests with serum and lymph node cells of isologous mice with induced resistance against gross lymphomas. Cancer Res. 1962 Sep;22:947–954. [PubMed] [Google Scholar]
  37. Schäfer W., Anderer F. A., Bauer H., Pister L. Studies on mouse leukemia viruses. I. Isolation and characterization of a group-specific antigen. Virology. 1969 Jul;38(3):387–394. doi: 10.1016/0042-6822(69)90151-2. [DOI] [PubMed] [Google Scholar]
  38. Spiegelman S., Burny A., Das M. R., Keydar J., Schlom J., Trávnícek M., Watson K. Synthetic DNA-RNA hybrids and RNA-RNA duplexes as templates for the polymerases of the oncogenic RNA viruses. Nature. 1970 Oct 31;228(5270):430–432. doi: 10.1038/228430a0. [DOI] [PubMed] [Google Scholar]
  39. Temin H. M., Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970 Jun 27;226(5252):1211–1213. doi: 10.1038/2261211a0. [DOI] [PubMed] [Google Scholar]
  40. WAHREN B. COMPARISON OF TUMOUR ANTIGENS IN AKR AND GROSS VIRUS (PASSAGE A)-INDUCED LEUKAEMIAS. Nature. 1965 Jan 23;205:409–410. doi: 10.1038/205409a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES