Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 May 1;135(5):1104–1112. doi: 10.1084/jem.135.5.1104

REQUIREMENT OF THYMUS (T) LYMPHOCYTES FOR RESISTANCE TO LISTERIOSIS

F C Lane 1, E R Unanue 1
PMCID: PMC2138983  PMID: 4623315

Abstract

Spleen cells of mice infected with Listeria monocytogenes were adoptively transferred to normal mice. Such lymphocytes conferred resistance to a lethal challenge with Listeria. Hyperimmunization of the donor reduces the number of cells necessary to transfer effective immunity. Such spleen cells if treated with anti-θ serum do not transfer resistance to Listeria. Hence, thymus (T) lymphocytes are involved in the resistance to infection with the facultative intracellular bacteria L. monocytogenes.

Full Text

The Full Text of this article is available as a PDF (477.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lond B Biol Sci. 1954 Dec 15;143(910):58–80. doi: 10.1098/rspb.1954.0054. [DOI] [PubMed] [Google Scholar]
  2. Benacerraf B., Green I. Cellular hypersensitivity. Annu Rev Med. 1969;20:141–154. doi: 10.1146/annurev.me.20.020169.001041. [DOI] [PubMed] [Google Scholar]
  3. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. II. Passive transfer of recovery mechanisms with immune lymphoid cells. J Exp Med. 1971 May 1;133(5):1074–1089. doi: 10.1084/jem.133.5.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cerottini J. C., Nordin A. A., Brunner K. T. Specific in vitro cytotoxicity of thymus-derived lymphocytes sensitized to alloantigens. Nature. 1970 Dec 26;228(5278):1308–1309. doi: 10.1038/2281308a0. [DOI] [PubMed] [Google Scholar]
  5. Koster F. T., McGregor D. D., Mackaness G. B. The mediator of cellular immunity. II. Migration of immunologically committed lymphocytes into inflammatory exudates. J Exp Med. 1971 Feb 1;133(2):400–409. doi: 10.1084/jem.133.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MITCHISON N. A. Studies on the immunological response to foreign tumor transplants in the mouse. I. The role of lymph node cells in conferring immunity by adoptive transfer. J Exp Med. 1955 Aug 1;102(2):157–177. doi: 10.1084/jem.102.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mackaness G. B., Hill W. C. The effect of anti-lymphocyte globulin on cell-mediated reistance to infection. J Exp Med. 1969 May 1;129(5):993–1012. doi: 10.1084/jem.129.5.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mackaness G. B. The monocyte in cellular immunity. Semin Hematol. 1970 Apr;7(2):172–184. [PubMed] [Google Scholar]
  10. McGregor D. D., Koster F. T., Mackaness G. B. The mediator of cellular immunity. I. The life-span and circulation dynamics of the immunologically committed lymphocyte. J Exp Med. 1971 Feb 1;133(2):389–399. doi: 10.1084/jem.133.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller J. F., Osoba D. Current concepts of the immunological function of the thymus. Physiol Rev. 1967 Jul;47(3):437–520. doi: 10.1152/physrev.1967.47.3.437. [DOI] [PubMed] [Google Scholar]
  12. Stone S. H. Transfedotr of Allergic Encephalomyelitis by Lymph Node Cells in Inbred Guinea Pigs. Science. 1961 Sep 1;134(3479):619–620. doi: 10.1126/science.134.3479.619. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES