Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 May 1;135(5):1095–1103. doi: 10.1084/jem.135.5.1095

LEUKOTACTIC FACTORS ELABORATED BY VIRUS-INFECTED TISSUES

Peter A Ward 1, Stanley Cohen 1, Thomas D Flanagan 1
PMCID: PMC2138986  PMID: 4623314

Abstract

Infection of chick embryos wih either Newcastle disease virus or mumps virus and infection of BGM cell cultures with mumps virus result in the elaboration of chemotactic activity for neutrophils and macrophages. These factors cannot be found in lysates of uninfected cells. They do not appear to be associated with the viral particles per se, but rather are present in virus-free supernates from infected fluids. Ultracentrifugal studies of the neutrophil chemotactic activity in allantoic fluid of embryos infected with the two different viruses indicate a similar biphasic distribution of activity, while fluid from the mammalian cell cultures shows a single zone of leukotactic activity, further suggesting that the infected cell, rather than the virus, is responsible for the leukotactic activity. Virus-infected cells also release a substance(s) which is itself not leukotactic but which can interact with human C3 or C5 to generate such activity. This leukotactic factor-generating substance is similar to that reported in another virus-infected cell system. It is postulated that the leukotactic factors elaborated as a result of virus infection of cells may play a protective role in vivo.

Full Text

The Full Text of this article is available as a PDF (505.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barron A. L., Olshevsky C., Cohen M. M. Characteristics of the BGM line of cells from African green monkey kidney. Brief report. Arch Gesamte Virusforsch. 1970;32(4):389–392. doi: 10.1007/BF01250067. [DOI] [PubMed] [Google Scholar]
  3. Brier A. M., Snyderman R., Mergenhagen S. E., Notkins A. L. Inflammation and herpes simplex virus: release of a chemotaxis-generating factor from infected cells. Science. 1970 Dec 4;170(3962):1104–1106. doi: 10.1126/science.170.3962.1104. [DOI] [PubMed] [Google Scholar]
  4. Cohen S., Ward P. A. In vitro and in vivo activity of a lymphocyte and immune complex-dependent chemotactic factor for eosinophils. J Exp Med. 1971 Jan 1;133(1):133–146. doi: 10.1084/jem.133.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HURLEY J. V. SUBSTANCES PROMOTING LEUKOCYTE EMIGRATION. Ann N Y Acad Sci. 1964 Aug 27;116:918–935. doi: 10.1111/j.1749-6632.1964.tb52558.x. [DOI] [PubMed] [Google Scholar]
  6. Hill J. H., Ward P. A. C3 leukotactic factors produced by a tissue protease. J Exp Med. 1969 Sep 1;130(3):505–518. doi: 10.1084/jem.130.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill J. H., Ward P. A. The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med. 1971 Apr 1;133(4):885–900. doi: 10.1084/jem.133.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keller H. U., Sorkin E. Chemotaxis of leucocytes. Experientia. 1968 Jul 15;24(7):641–652. doi: 10.1007/BF02138287. [DOI] [PubMed] [Google Scholar]
  9. NILSSON U. R., MUELLER-EBERHARD H. J. ISOLATION OF BETA IF-GLOBULIN FROM HUMAN SERUM AND ITS CHARACTERIZATION AS THE FIFTH COMPONENT OF COMPLEMENT. J Exp Med. 1965 Aug 1;122:277–298. doi: 10.1084/jem.122.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shin H. S., Snyderman R., Friedman E., Mellors A., Mayer M. M. Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science. 1968 Oct 18;162(3851):361–363. doi: 10.1126/science.162.3851.361. [DOI] [PubMed] [Google Scholar]
  11. Walker W. S., Barlet R. L., Kurtz H. M. Isolation and partial characterization of a staphylococcal leukocyte cytotaxin. J Bacteriol. 1969 Mar;97(3):1005–1008. doi: 10.1128/jb.97.3.1005-1008.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ward P. A. Chemotaxis of human eosinophils. Am J Pathol. 1969 Jan;54(1):121–128. [PMC free article] [PubMed] [Google Scholar]
  13. Ward P. A. Chemotoxis of mononuclear cells. J Exp Med. 1968 Nov 1;128(5):1201–1221. doi: 10.1084/jem.128.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ward P. A., Cochrane C. G., Muller-Eberhard H. J. Further studies on the chemotactic factor of complement and its formation in vivo. Immunology. 1966 Aug;11(2):141–153. [PMC free article] [PubMed] [Google Scholar]
  15. Ward P. A., Hill J. H. C5 chemotactic fragments produced by an enzyme in lysosomal granules of neutrophils. J Immunol. 1970 Mar;104(3):535–543. [PubMed] [Google Scholar]
  16. Ward P. A., Lepow I. H., Newman L. J. Bacterial factors chemotactic for polymorphonuclear leukocytes. Am J Pathol. 1968 Apr;52(4):725–736. [PMC free article] [PubMed] [Google Scholar]
  17. Ward P. A. Neutrophil chemotactic factors and related clinical disorders. Arthritis Rheum. 1970 Mar-Apr;13(2):181–186. doi: 10.1002/art.1780130210. [DOI] [PubMed] [Google Scholar]
  18. Ward P. A., Offen C. D., Montgomery J. R. Chemoattractants of leukocytes, with special reference to lymphocytes. Fed Proc. 1971 Nov-Dec;30(6):1721–1724. [PubMed] [Google Scholar]
  19. Ward P. A., Remold H. G., David J. R. Leukotactic factor produced by sensitized lymphocytes. Science. 1969 Mar 7;163(3871):1079–1081. doi: 10.1126/science.163.3871.1079. [DOI] [PubMed] [Google Scholar]
  20. Ward P. A., Zvaifler N. J. Complement-derived leukotactic factors in inflammatory synovial fluids of humans. J Clin Invest. 1971 Mar;50(3):606–616. doi: 10.1172/JCI106531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES