Abstract
The activities of specific transport systems were determined before and after large portions of the surface membrane had been interiorized by phagocytosis of inert particles. In five separate transport systems in rabbit polymorphonuclear leukocytes (adenosine and two adenine transport systems) and alveolar macrophages (adenosine and lysine transport systems), the rate of transport was unaffected even after an estimated 35–50% of the membrane had been internalized. Studies of the kinetics of lysine and adenosine transport, exchange diffusion of lysine transport in alveolar macrophages, and the specificities of adenine transport in polymorphonuclear leukocytes indicate that the nature of the membrane transport systems is not altered by phagocytosis. Therefore the constancy of transport indicates that the number of carriers remains the same before and after phagocytosis. It was also shown that this constancy of transport did not depend on the introduction into the surface of new transport sites during phagocytosis. Therefore transport sites are preserved on the surface during the internalization of membrane which accompanies phagocytosis. The results are best explained by the concept that the membrane is mosaic in character with geographically separate transport and phagocytic sites.
Full Text
The Full Text of this article is available as a PDF (1,013.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlin R. D. Specificities of transport systems and enzymes. Science. 1970 Jun 26;168(3939):1539–1545. doi: 10.1126/science.168.3939.1539. [DOI] [PubMed] [Google Scholar]
- Cerottini J. C., Brunner K. T. Localization of mouse isoantigens on the cell surface as revealed by immunofluorescence. Immunology. 1967 Oct;13(4):395–403. [PMC free article] [PubMed] [Google Scholar]
- Diedrich D. F. Glucose transport carrier in dog kidney: its concentration and turnover number. Am J Physiol. 1966 Sep;211(3):581–587. doi: 10.1152/ajplegacy.1966.211.3.581. [DOI] [PubMed] [Google Scholar]
- ESSNER E. An electron microscopic study of erythrophagocytosis. J Biophys Biochem Cytol. 1960 Apr;7:329–334. doi: 10.1083/jcb.7.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsbach P., Levy S. Increased synthesis of phospholipid during phagocytosis. J Clin Invest. 1968 Oct;47(10):2217–2229. doi: 10.1172/JCI105907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox C. F., Carter J. R., Kennedy E. P. GENETIC CONTROL OF THE MEMBRANE PROTEIN COMPONENT OF THE LACTOSE TRANSPORT SYSTEM OF Escherichia coli. Proc Natl Acad Sci U S A. 1967 Mar;57(3):698–705. doi: 10.1073/pnas.57.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon S., Cohn Z. Macrophage-melanocyte heterokaryons. I. Preparation and properties. J Exp Med. 1970 May 1;131(5):981–1003. doi: 10.1084/jem.131.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkins R. A., Berlin R. D. Purine transport in polymorphonuclear leukocytes. Biochim Biophys Acta. 1969 Mar 11;173(2):324–337. doi: 10.1016/0005-2736(69)90115-1. [DOI] [PubMed] [Google Scholar]
- KAISER H. K., WOOD W. B., Jr Studies on the pathogensis of fever. IX. The production of endogenous pyrogen by polymorphonuclear leucocytes. J Exp Med. 1962 Jan 1;115:27–36. doi: 10.1084/jem.115.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn E. D., Weisman R. A. Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. J Cell Biol. 1967 Jul;34(1):219–227. doi: 10.1083/jcb.34.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
- Michaelis T. W., Larrimer N. R., Metz E. N., Balcerzak S. P. Surface morphology of human leukocytes. Blood. 1971 Jan;37(1):23–30. [PubMed] [Google Scholar]
- ROBERTS J., QUASTEL J. H. PARTICLE UPTAKE BY POLYMORPHONUCLEAR LEUCOCYTES AND EHRLICH ASCITES-CARCINOMA CELLS. Biochem J. 1963 Oct;89:150–156. doi: 10.1042/bj0890150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbie J. P., Wilson T. H. Transmembrane effects of beta-galactosides on thiomethyl-beta-galactoside transport in Escherichia coli. Biochim Biophys Acta. 1969 Mar 11;173(2):234–244. doi: 10.1016/0005-2736(69)90107-2. [DOI] [PubMed] [Google Scholar]
- Shapiro B., Kollmann G., Martin D. The diversity of sulfhydryl groups in the human erythrocyte membrane. J Cell Physiol. 1970 Jun;75(3):281–291. doi: 10.1002/jcp.1040750304. [DOI] [PubMed] [Google Scholar]
- Smith C. W., Hollers J. C. The pattern of binding of fluorescein-labeled concanavalin A to the motile lymphocyte. J Reticuloendothel Soc. 1970 Nov;8(5):458–464. [PubMed] [Google Scholar]
- Stackpole C. W., Aoki T., Boyse E. A., Old L. J., Lumley-Frank J., De Harven E. Cell surface antigens: serial sectioning of single cells as an approach to topographical analysis. Science. 1971 Apr 30;172(3982):472–474. doi: 10.1126/science.172.3982.472. [DOI] [PubMed] [Google Scholar]
- Stirling C. E. High-resolution radioautography of phlorizin-3H in rings of hamster intestine. J Cell Biol. 1967 Dec;35(3):605–618. doi: 10.1083/jcb.35.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsan M. F., Berlin R. D. Membrane transport in the rabbit alveolar macrophage. The specificity and characteristics of amino acid transport systems. Biochim Biophys Acta. 1971 Jul 6;241(1):155–169. doi: 10.1016/0005-2736(71)90313-0. [DOI] [PubMed] [Google Scholar]
- VANSTEVENINCK J., WEED R. I., ROTHSTEIN A. LOCALIZATION OF ERYTHROCYTE MEMBRANE SULFHYDRYL GROUPS ESSENTIAL FOR GLUCOSE TRANSPORT. J Gen Physiol. 1965 Mar;48:617–632. doi: 10.1085/jgp.48.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]
- Warfel A. H., Elberg S. S. Macrophage membranes viewed through a scanning electron microscope. Science. 1970 Oct 23;170(3956):446–447. doi: 10.1126/science.170.3956.446. [DOI] [PubMed] [Google Scholar]
- Weisman R. A., Korn E. D. Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties. Biochemistry. 1967 Feb;6(2):485–497. doi: 10.1021/bi00854a017. [DOI] [PubMed] [Google Scholar]
- Wong P. T., Kashket E. R., Wilson T. H. Energy coupling in the lactose transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Jan;65(1):63–69. doi: 10.1073/pnas.65.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong P. T., Wilson T. H. Counterflow of galactosides in Escherichia coli. Biochim Biophys Acta. 1970;196(2):336–350. doi: 10.1016/0005-2736(70)90021-0. [DOI] [PubMed] [Google Scholar]