Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907

THE DEVELOPMENT OF NEUTROPHILIC POLYMORPHONUCLEAR LEUKOCYTES IN HUMAN BONE MARROW

ORIGIN AND CONTENT OF AZUROPHIL AND SPECIFIC GRANULES

Dorothy Ford Bainton 1, Joan L Ullyot 1, Marilyn G Farquhar 1
PMCID: PMC2138991  PMID: 4106490

Abstract

Neutrophilic leukocytes (PMN) and their precursors from normal human marrow and blood were examined by histochemical staining and by electron microscopy and cytochemistry in order to determine the origin and nature of their cytoplasmic granules. Human neutrophils contain two basic types of granules, azurophils and specifics, which differ in morphology, contents, and time of origin. Azurophils are large and may be spherical or ellipsoid, the latter with a crystalline inclusion. They are produced in the first secretory stage (promyelocyte), contain peroxidase and various lysosomal enzymes, and thus correspond to modified primary lysosomes. Specifics are smaller, may be spherical or elongated, and are formed during a later secretory stage (myelocyte). They lack lysosomal enzymes and contain alkaline phosphatase and basic protein; their contents remain largely undetermined. Specifics outnumber azurophils in the mature PMN because of reduction in numbers of azurophils per cell by cell division in the myelocyte stage. The findings indicate that the situation is basically the same as described previously in the rabbit, insofar as the origin, enzymic activity, and persistence in the mature cell of the two types (azurophil and specific) of granules are concerned. The main difference between PMN of the two species is in the morphology (size, shape, and density) of the granules, especially the azurophils.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERMAN G. A. HISTOCHEMICAL DIFFERENTIATION DURING NEUTROPHIL DEVELOPMENT AND MATURATION. Ann N Y Acad Sci. 1964 Feb 28;113:537–565. doi: 10.1111/j.1749-6632.1964.tb40690.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. R. A method of preparing peripheral leucocytes for electron microscopy. J Ultrastruct Res. 1965 Oct;13(3):263–268. doi: 10.1016/s0022-5320(65)80075-2. [DOI] [PubMed] [Google Scholar]
  3. Athens J. W. Granulocyte kinetics in health and disease. Natl Cancer Inst Monogr. 1969 May;30:135–155. [PubMed] [Google Scholar]
  4. BESSIS M., THIERY J. P. Electron microscopy of human white blood cells and their stem cells. Int Rev Cytol. 1961;12:199–241. doi: 10.1016/s0074-7696(08)60541-0. [DOI] [PubMed] [Google Scholar]
  5. Baehner R. L., Karnovsky M. J., Karnovsky M. L. Degranulation of leukocytes in chronic granulomatous disease. J Clin Invest. 1969 Jan;48(1):187–192. doi: 10.1172/JCI105967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baggiolini M., De Duve C., Masson P. L., Heremans J. F. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med. 1970 Mar 1;131(3):559–570. doi: 10.1084/jem.131.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baggiolini M., Hirsch J. G., De Duve C. Further biochemical and morphological studies of granule fractions from rabbit heterophil leukocytes. J Cell Biol. 1970 Jun;45(3):586–597. doi: 10.1083/jcb.45.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. I. Histochemical staining of bone marrow smears. J Cell Biol. 1968 Nov;39(2):286–298. doi: 10.1083/jcb.39.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bainton D. F., Farquhar M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966 Feb;28(2):277–301. doi: 10.1083/jcb.28.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bainton D. F., Farquhar M. G. Segregation and packaging of granule enzymes in eosinophilic leukocytes. J Cell Biol. 1970 Apr;45(1):54–73. doi: 10.1083/jcb.45.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Boggs D. R. The kinetics of neutrophilic leukocytes in health and in disease. Semin Hematol. 1967 Oct;4(4):359–386. [PubMed] [Google Scholar]
  13. Breton-Gorius J., Guichard J. Etude au microscope électronique de la localisation des peroxydases dans les cellules DE LA MOELLE OSSEUSE HUMAINE. Nouv Rev Fr Hematol. 1969 Sep-Oct;9(5):678–687. [PubMed] [Google Scholar]
  14. Breton-Gorius J. Structures périodiques dans les granulations éosinophiles et neutrophiles des leucocytes polynucléaires du sang de l'homme. Nouv Rev Fr Hematol. 1966 Mar-Apr;6(2):195–208. [PubMed] [Google Scholar]
  15. CAPONE R. J., WEINREB L., CHAPMAN G. B. ELECTRON MICROSCOPE STUDIES ON NORMAL HUMAN MYELOID ELEMENTS. Blood. 1964 Mar;23:300–320. [PubMed] [Google Scholar]
  16. Chodirker W. B., Bock G. N., Vaughan J. H. Isolation of human PMN leukocytes and granules: observations on early blood diluion and on heparin. J Lab Clin Med. 1968 Jan;71(1):9–19. [PubMed] [Google Scholar]
  17. Daems W. T. On the fine structure of human neutrophilic leukocyte granules. J Ultrastruct Res. 1968 Aug;24(3):343–348. doi: 10.1016/s0022-5320(68)90070-1. [DOI] [PubMed] [Google Scholar]
  18. Douglas S. D., Davis W. C., Fudenberg H. H. Granulocytopathies: pleomorphism of neutrophil dysfunction. Am J Med. 1969 Jun;46(6):901–909. doi: 10.1016/0002-9343(69)90091-6. [DOI] [PubMed] [Google Scholar]
  19. Dunn W. B., Hardin J. H., Spicer S. S. Ultrastructural localization of myeloperoxidase in human neutrophil and rabbit heterophil and eosinophil leukocytes. Blood. 1968 Dec;32(6):935–944. [PubMed] [Google Scholar]
  20. Dunn W. B., Spicer S. S. Histochemical demonstration of sulfated mucosubstances and cationic proteins in human granulocytes and platelets. J Histochem Cytochem. 1969 Oct;17(10):668–674. doi: 10.1177/17.10.668. [DOI] [PubMed] [Google Scholar]
  21. Enomoto T., Kitani T. [Electron microscopic studies on peroxidase and acid phosphatase reaction in human leukocytes (in normal and leukemic cells and on phagocytosis)]. Nihon Ketsueki Gakkai Zasshi. 1966 Aug;29(4):554–570. [PubMed] [Google Scholar]
  22. FALLON H. J., FREI E., 3rd, DAVIDSON J. D., TRIER J. S., BURK D. Leukocyte preparations from human blood: evaluation of their morphologic and metabolic state. J Lab Clin Med. 1962 May;59:779–791. [PubMed] [Google Scholar]
  23. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goldfischer S. The cytochemical demonstration of lysosomal aryl sulfatase activity by light and electron microscopy. J Histochem Cytochem. 1965 Jul-Aug;13(6):520–523. doi: 10.1177/13.6.520. [DOI] [PubMed] [Google Scholar]
  25. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  26. HIRSCHHORN R., WEISSMANN G. ISOLATION AND PROPERTIES OF HUMAN LEUKOCYTE LYSOSOMES IN VITRO. Proc Soc Exp Biol Med. 1965 May;119:36–39. doi: 10.3181/00379727-119-30091. [DOI] [PubMed] [Google Scholar]
  27. Hirsch J. G., Fedorko M. E. Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and "postfixation" in uranyl acetate. J Cell Biol. 1968 Sep;38(3):615–627. doi: 10.1083/jcb.38.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Holtzman E., Dominitz R. Cytochemical studies of lysosomes, golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J Histochem Cytochem. 1968 May;16(5):320–336. doi: 10.1177/16.5.320. [DOI] [PubMed] [Google Scholar]
  29. Kondo K., Yoshitake J., Takemura K. The fine structure of Auer bodies. J Electron Microsc (Tokyo) 1966;15(4):237–248. [PubMed] [Google Scholar]
  30. LACY P. E. Electron microscopy of the beta cell of the pancreas. Am J Med. 1961 Dec;31:851–859. doi: 10.1016/0002-9343(61)90024-9. [DOI] [PubMed] [Google Scholar]
  31. McCall C. E., Katayama I., Cotran R. S., Finland M. Lysosomal and ultrastructural changes in human "toxic" neutrophils during bacterial infection. J Exp Med. 1969 Feb 1;129(2):267–293. doi: 10.1084/jem.129.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller F., Herzog V. Die Lokalisation von Peroxydase und saurer Phosphatase in eosinophilen Leukocyten während der Reifung. Elek. Elektronenmikroskopisch-cytochemische Untersuchungen am Knochenmark von Ratte und Kaninchen. Z Zellforsch Mikrosk Anat. 1969;97(1):84–110. [PubMed] [Google Scholar]
  33. Nichols B. A., Bainton D. F., Farquhar M. G. Differentiation of monocytes. Origin, nature, and fate of their azurophil granules. J Cell Biol. 1971 Aug;50(2):498–515. doi: 10.1083/jcb.50.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Olsson I. Isolation of human leukocyte granules using colloidal silica-polysaccharide density gradients. Exp Cell Res. 1969 Mar;54(3):325–330. doi: 10.1016/0014-4827(69)90210-9. [DOI] [PubMed] [Google Scholar]
  35. Palade G. E. Structure and function at the cellular level. JAMA. 1966 Nov 21;198(8):815–825. [PubMed] [Google Scholar]
  36. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schultz J., Corlin R., Oddi F., Kaminker K., Jones W. Myeloperoxidase of the leucocyte of normal human blood. 3. Isolation of the peroxidase granule. Arch Biochem Biophys. 1965 Jul;111(1):73–79. doi: 10.1016/0003-9861(65)90324-3. [DOI] [PubMed] [Google Scholar]
  38. Scott R. E., Horn R. G. Ultrastructural aspects of neutrophil granulocyte development in humans. Lab Invest. 1970 Aug;23(2):202–215. [PubMed] [Google Scholar]
  39. Takikawa K., Ohta H. [On the nature of neutrophilic granules]. Nihon Ketsueki Gakkai Zasshi. 1966 Aug;29(4):571–577. [PubMed] [Google Scholar]
  40. Terry R. W., Bainton D. F., Farquhar M. G. Formation and structure of specific granules in basophilic leukocytes of the guinea pig. Lab Invest. 1969 Jul;21(1):65–76. [PubMed] [Google Scholar]
  41. Watanabe I., Donahue S., Hoggatt N. Method for electron microscopic studies of circulating human leukocytes and observations on their fine structure. J Ultrastruct Res. 1967 Oct 31;20(5):366–382. doi: 10.1016/s0022-5320(67)80106-0. [DOI] [PubMed] [Google Scholar]
  42. Wetzel B. K., Spicer S. S., Horn R. G. Fine structural localization of acid and alkaline phosphatases in cells of rabbit blood and bone marrow. J Histochem Cytochem. 1967 Jun;15(6):311–334. doi: 10.1177/15.6.311. [DOI] [PubMed] [Google Scholar]
  43. Yamada E., Yamauchi R. [Some observations on the cytochemistry and morphogenesis of the granulocytes in the rat bone marrow as revealed by electron microscopy]. Nihon Ketsueki Gakkai Zasshi. 1966 Aug;29(4):530–541. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES