Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Oct 1;134(4):815–832. doi: 10.1084/jem.134.4.815

IMMUNOGLOBULIN AND OTHER SURFACE ANTIGENS OF CELLS OF THE IMMUNE SYSTEM

Toshitada Takahashi 1, Lloyd J Old 1, K Robert McIntire 1, Edward A Boyse 1
PMCID: PMC2139003  PMID: 4106485

Abstract

Immunoglobulins (Ig) on cells of the immune system: The cytotoxicity test, with class-specific and type-specific anti-Ig sera, identifies κ and µ determinants on mouse lymphocytes. The proportion of κ+ cells is characteristic for each source of cells: 30% of bone marrow cells, 40% of cells from peripheral lymph nodes, 45% of lymphocytes from peripheral blood or peritoneal cavity, and 50% of spleen cells. No Ig was demonstrable on thymocytes or on leukemia cells (most of which arise from thymus-derived [T] cells). Cytotoxicity tests were performed on various myelomas secreting different Ig; the only positive reactions were given by κγ1 myelomas (all four κγ1 myelomas tested were sensitive to both anti-κ and anti-γ1). Hemolytic plaque-forming cells (PFC) of IgG type had no demonstrable surface Ig, but a proportion of IgM PFC were κ+µ+. Virtually all rosette-forming cells (RFC) have surface Ig, more than 90% of them being inhibited by anti-κ, 50% by anti-µ, and 10–30% by antisera to other heavy chains. Anti-λ sera gave no positive reactions with any cell type, which is in keeping with the low level of this light chain in mouse serum. Ig and other differentiation antigens as markers for T and B cells: Thymocytes are hallmarked by the alloantigens TL, θ, and the Ly series, and it is generally held that extrathymic lymphoid cells that bear them are derived from thymocytes. There is one alloantigen marker for the thymus-independent (B) cell, and that is PC, which appears late in differentiation. (The mouse-specific lymphocyte (MSLA) and mouse-specific bone marrow-derived lymphocyte (MBLA) antigens recognized by heteroantisera, not used in the present study, are other candidates for T and B cell markers.) Making use of antisera to these surface antigens to inhibit the function of cells that carry them, we find the following: Approximately 30% of RFC, 60% of IgM PFC, and 90% of IgG are PC+ and so are identified as B cells. No T markers were demonstrable on these cell populations. Thus if T cells do become RFC or PFC they presumably lose their T surface markers in the process (cf. the quantitative reduction of T markers accompanying the thymocyte → lymphocyte transition). Cells that have the potential to initiate graft-versus-host (GVH) reactions have the T cell surface phenotype θ+Ig-. Adoptive transfer of thymus-dependent antibody-forming capacity (response to sheep erythrocytes) required θ+ cells but transfer of a thymus-independent immune response to Brucella antigen did not. Cells with surface Ig were involved in both types of adoptive transfers. Thus the presently available T markers do not provide evidence for T cells carrying surface Ig. Suppression of the Ig phenotype by antibody: antigenic modulation? A phenotypic change from Ig+ to Ig- occurs when Ig+ lymphocytes or myeloma cells are incubated with anti-Ig sera in vitro in the absence of complement (C). As with antigenic modulation in the TL system, which it resembles, this phenomenon is temperature dependent and in the case of lymph node cells (LNC) can be inhibited by high doses of actinomycin D.

Full Text

The Full Text of this article is available as a PDF (909.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYSE E. A., OLD L. J., CHOUROULINKOV I. CYTOTOXIC TEST FOR DEMONSTRATION OF MOUSE ANTIBODY. Methods Med Res. 1964;10:39–47. [PubMed] [Google Scholar]
  2. Boyse E. A., Miyazawa M., Aoki T., Old L. J. Ly-A and Ly-B: two systems of lymphocyte isoantigens in the mouse. Proc R Soc Lond B Biol Sci. 1968 Jun 11;170(1019):175–193. doi: 10.1098/rspb.1968.0032. [DOI] [PubMed] [Google Scholar]
  3. Claman H. N., Chaperon E. A., Triplett R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med. 1966 Aug-Sep;122(4):1167–1171. doi: 10.3181/00379727-122-31353. [DOI] [PubMed] [Google Scholar]
  4. Cooper M. D., Gabrielsen A. E., Good R. A. Role of the thymus and other central lymphoid tissues in immunological disease. Annu Rev Med. 1967;18:113–138. doi: 10.1146/annurev.me.18.020167.000553. [DOI] [PubMed] [Google Scholar]
  5. Dresser D. W., Wortis D. H. Use of an antiglobulin serum to detect cells producing antibody with low haemolytic efficiency. Nature. 1965 Nov 27;208(5013):859–861. doi: 10.1038/208859a0. [DOI] [PubMed] [Google Scholar]
  6. Edwards G. E., Miller R. G., Phillips R. A. Differentiation of rosette-forming cells from myeloid stem cells. J Immunol. 1970 Sep;105(3):719–729. [PubMed] [Google Scholar]
  7. Greaves M. F. Biological effects of anti-immunoglobulins: evidence for immunoglobulin receptors on 'T' and 'B' lymphocytes. Transplant Rev. 1970;5:45–75. doi: 10.1111/j.1600-065x.1970.tb00356.x. [DOI] [PubMed] [Google Scholar]
  8. Greaves M. F., Möller E. Studies on antigen-binding cells. I. The origin of reactive cells. Cell Immunol. 1970 Oct;1(4):372–385. doi: 10.1016/0008-8749(70)90015-8. [DOI] [PubMed] [Google Scholar]
  9. Klein E., Eskeland T., Inoue M., Strom R., Johansson B. Surface immunoglobulin-moieties on lymphoid cells. Exp Cell Res. 1970 Sep;62(1):133–148. doi: 10.1016/0014-4827(79)90515-9. [DOI] [PubMed] [Google Scholar]
  10. Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Old L. J., Stockert E., Boyse E. A., Kim J. H. Antigenic modulation. Loss of TL antigen from cells exposed to TL antibody. Study of the phenomenon in vitro. J Exp Med. 1968 Mar 1;127(3):523–539. doi: 10.1084/jem.127.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. REIF A. E., ALLEN J. M. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med. 1964 Sep 1;120:413–433. doi: 10.1084/jem.120.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SELL S., GELL P. G. STUDIES ON RABBIT LYMPHOCYTES IN VITRO. I. STIMULATION OF BLAST TRANSFORMATION WITH AN ANTIALLOTYPE SERUM. J Exp Med. 1965 Aug 1;122:423–440. doi: 10.1084/jem.122.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SIMONSEN M. Graft versus host reactions. Their natural history, and applicability as tools of research. Prog Allergy. 1962;6:349–467. [PubMed] [Google Scholar]
  15. Schlesinger M. Anti-theta antibodies for detecting thymus-dependent lymphocytes in the immune response of mice to SRBC. Nature. 1970 Jun 27;226(5252):1254–1256. doi: 10.1038/2261254a0. [DOI] [PubMed] [Google Scholar]
  16. Shirai T., Mellors R. C. Natural thymocytotoxic autoantibody and reactive antigen in New Zealand black and other mice. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1412–1415. doi: 10.1073/pnas.68.7.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Takahashi T., Carswell E. A., Thorbecke G. J. Surface antigens of immunocompetent cells. I. Effect of theta and PC.1 alloantisera on the ability of spleen cells to transfer immune responses. J Exp Med. 1970 Dec 1;132(6):1181–1190. doi: 10.1084/jem.132.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takahashi T., Old L. J., Boyse E. A. Surface alloantigens of plasma cells. J Exp Med. 1970 Jun 1;131(6):1325–1341. doi: 10.1084/jem.131.6.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES