Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Jul 1;134(1):66–82. doi: 10.1084/jem.134.1.66

CELL-TO-CELL INTERACTION IN THE IMMUNE RESPONSE

VI. CONTRIBUTION OF THYMUS-DERIVED CELLS AND ANTIBODY-FORMING CELL PRECURSORS TO IMMUNOLOGICAL MEMORY

J F A P Miller 1, J Sprent 1
PMCID: PMC2139027  PMID: 5105057

Abstract

Collaboration between thymus-derived lymphocytes and nonthymus-derived antibody-forming cell precursors occurs in the primary antibody response of mice to heterologous erythrocytes and serum proteins. The purpose of the experiments reported here was to determine whether collaboration took place in an adoptive secondary antibody response. A chimeric population of lymphocytes was produced by reconstituting neonatally thymectomized CBA mice soon after birth with (CBA x C57BL)F1 thymus lymphocytes. These mice could be effectively primed to fowl immunoglobulin G (FγG) and their thoracic duct lymphocytes adoptively transferred memory responses to irradiated mice. The activity of these cells was impaired markedly by preincubation with CBA anti-C57BL serum and to a lesser extent by anti-θ-serum. Reversal of this deficiency was obtained by adding T cells in the form of thoracic duct cells from normal CBA mice. Cells from FγG-primed mice were at least 10 times as effective as cells from normal mice or from CBA mice primed to horse erythrocytes. These results were considered to support the concept that memory resides in the T cell population and that collaboration between T and B cells is necessary for an optimal secondary antibody response. Poor antibody responses were obtained in irradiated mice given mixtures of thoracic duct cells from primed mice and of B cells from unprimed mice (in the form of spleen or thoracic duct cells from thymectomized donors). In contrast to the situation with T cells, the deficiency in the B cell population could not be reversed by adding B cells from unprimed mice. It was considered that memory resides in B cells as well as in T cells and that priming probably entails a change in the B cell population which is fundamentally different from that produced in the T cell population.

Full Text

The Full Text of this article is available as a PDF (926.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYSE E. A., OLD L. J., CHOUROULINKOV I. CYTOTOXIC TEST FOR DEMONSTRATION OF MOUSE ANTIBODY. Methods Med Res. 1964;10:39–47. [PubMed] [Google Scholar]
  2. Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
  3. Cunningham A. J. Studies on the cellular basis of IgM immunological memory. The induction of antibody formation in bone marrow cells by primed spleen cells. Immunology. 1969 Dec;17(6):933–942. [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  5. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies A. J. The thymus and the cellular basis of immunity. Transplant Rev. 1969;1:43–91. doi: 10.1111/j.1600-065x.1969.tb00136.x. [DOI] [PubMed] [Google Scholar]
  7. Dresser D. W., Wortis D. H. Use of an antiglobulin serum to detect cells producing antibody with low haemolytic efficiency. Nature. 1965 Nov 27;208(5013):859–861. doi: 10.1038/208859a0. [DOI] [PubMed] [Google Scholar]
  8. Gowans J. L., Uhr J. W. The carriage of immunological memory by small lymphocytes in the rat. J Exp Med. 1966 Nov 1;124(5):1017–1030. doi: 10.1084/jem.124.5.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobson E. B., L'age-Stehr J., Herzenberg L. A. Immunological memory in mice. II. Cell interactions in the secondary immune response studies by means of immunoglobulin allotype markers. J Exp Med. 1970 Jun 1;131(6):1109–1120. doi: 10.1084/jem.131.6.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KERN M., EISEN H. N. The effect of antigenic stimulation on incorporation of phosphate and methionine into proteins of isolated lymph node cells. J Exp Med. 1959 Aug 1;110(2):207–219. doi: 10.1084/jem.110.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MILLER J. F. Studies on mouse leukaemia. The role of the thymus in leukaemogenesis by cell-free leukaemic filtrates. Br J Cancer. 1960 Mar;14:93–98. doi: 10.1038/bjc.1960.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin W. J. Assay for the immunosuppressive capacity of antilymphocyte serum. I. Evidence for opsonization. J Immunol. 1969 Nov;103(5):979–989. [PubMed] [Google Scholar]
  14. Miller J. F., Mitchell G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):801–820. doi: 10.1084/jem.128.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
  16. Miller J. F., Sprent J. Thymus-derived cells in mouse thoracic duct lymph. Nat New Biol. 1971 Apr 28;230(17):267–270. doi: 10.1038/newbio230267a0. [DOI] [PubMed] [Google Scholar]
  17. Miller J. F., Warner N. L. The immune response of normal, irradiated and thymectomized mice to fowl immunoglobulin G as detected by a hemolytic plaque technique. Int Arch Allergy Appl Immunol. 1971;40(1):59–71. doi: 10.1159/000230395. [DOI] [PubMed] [Google Scholar]
  18. Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nossal G. J., Cunningham A., Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J Exp Med. 1968 Oct 1;128(4):839–853. doi: 10.1084/jem.128.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. REIF A. E., ALLEN J. M. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med. 1964 Sep 1;120:413–433. doi: 10.1084/jem.120.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sterzl J., Ríha I. Detection of cells producing 7S antibodies by the plaque technique. Nature. 1965 Nov 27;208(5013):858–859. doi: 10.1038/208858a0. [DOI] [PubMed] [Google Scholar]
  22. Takahashi T., Carswell E. A., Thorbecke G. J. Surface antigens of immunocompetent cells. I. Effect of theta and PC.1 alloantisera on the ability of spleen cells to transfer immune responses. J Exp Med. 1970 Dec 1;132(6):1181–1190. doi: 10.1084/jem.132.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taylor R. B. Cellular cooperation in the antibody response of mice to two serum albumins: specific function of thymus cells. Transplant Rev. 1969;1:114–149. doi: 10.1111/j.1600-065x.1969.tb00138.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES