Abstract
Rabbits were immunized with p-azobenzene arsonic acid derivatives of human serum albumin (HA-As) or of dissociated keyhole limpet hemocyanin. The IgM response to the hapten was evaluated in terms of the number of hapten-specific plaque-forming cells in the lymph node draining the injection site. In some experiments, antibody was measured by agglutination of tanned and sensitized erythrocytes. The hapten response of animals immunized with HA-As was increased (promoting effect) when the animals were injected with one of several structurally unrelated macromolecules: keyhole limpet hemocyanin (KLH), horse spleen ferritin (HSF), lysozyme (Lys), alum-precipitated human gamma globulin (alum-precipitated HGG). Different macromolecules differed in the magnitude of the promoting effect they induced, e.g., promotion by the associated form of KLH was greater than that by the dissociated form; alum-precipitated HGG was a better promoter than was soluble HGG. The relative magnitude of promotion by different macromolecules (associated vs. dissociated KLH, alum-precipitated vs. soluble HGG) correlated with the relative magnitude of the carrier effect, as judged by the hapten response induced by p-azobenzene arsonic acid conjugated to various proteins. Promotion was detected by agglutination assay of circulating antibody, by plaque assay of cells from the popliteal lymph node draining the site of preinjection, but not by plaque assay of cells from the contralateral lymph node. Promotion was dependent on the dose of the promoting macromolecule and on the dose of the hapten-protein conjugate. It was not observed in animals tolerant to the promoting macromolecule. Inhibition (i.e. antigenic competition), rather than promotion, was observed upon a secondary response to the preinjected macromolecule or when the hapten-protein conjugate was incorporated in Freund's adjuvant.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOYDEN S. V. The adsorption of proteins on erythrocytes treated with tannic acid and subsequent hemagglutination by antiprotein sera. J Exp Med. 1951 Feb;93(2):107–120. doi: 10.1084/jem.93.2.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben Efraim S., Liacopoulos P. Inhibition of delayed hypersensitivity in guinea-pigs after competition between synthetic antigens. Nature. 1967 Feb 18;213(5077):711–713. doi: 10.1038/213711a0. [DOI] [PubMed] [Google Scholar]
- CINADER B., DUBERT J. M. Specific inhibition of response to purified protein antigens. Proc R Soc Lond B Biol Sci. 1956 Nov 13;146(922):18–33. doi: 10.1098/rspb.1956.0068. [DOI] [PubMed] [Google Scholar]
- CINADER B., PEARCE J. H. The specificity of acquired immunological tolerance to azo proteins. Br J Exp Pathol. 1958 Feb;39(1):8–29. [PMC free article] [PubMed] [Google Scholar]
- Cinader B., St Rose J. E., Yoshimura M. The effect of cross-reacting antigens on the tolerant state. J Exp Med. 1967 Jun 1;125(6):1057–1073. doi: 10.1084/jem.125.6.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claman H. N., Chaperon E. A., Triplett R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med. 1966 Aug-Sep;122(4):1167–1171. doi: 10.3181/00379727-122-31353. [DOI] [PubMed] [Google Scholar]
- Fronstin M. H., Sage H. J., Vazquez J. J. Role of the carrier protein in the antibody elicited to DNP hapten. Proc Soc Exp Biol Med. 1967 Mar;124(3):944–947. doi: 10.3181/00379727-124-31892. [DOI] [PubMed] [Google Scholar]
- Herscowitz H. B., Stavitsky A. B. An in vitro model of the anamnestic response of rabbit lymph node cell suspensions to keyhole limpet hemocyanin. J Immunol. 1970 Dec;105(6):1389–1399. [PubMed] [Google Scholar]
- INGRAHAM J. S. [Specific, complement-dependent hemolysis of sheep erythrocytes by antiserum to azo hapten groups]. J Infect Dis. 1952 Nov-Dec;91(3):268–275. doi: 10.1093/infdis/91.3.268. [DOI] [PubMed] [Google Scholar]
- Kabat E. A. The nature of an antigenic determinant. J Immunol. 1966 Jul;97(1):1–11. [PubMed] [Google Scholar]
- Kincade P. W., Lawton A. R., Bockman D. E., Cooper M. D. Suppression of immunoglobulin G synthesis as a result of antibody-mediated suppression of immunoglobulin M synthesis in chickens. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1918–1925. doi: 10.1073/pnas.67.4.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley J., Dutton R. W. Antigen receptor molecules: inhibition by antiserum against kappa light chains. Science. 1970 Jul 31;169(3944):487–488. doi: 10.1126/science.169.3944.487. [DOI] [PubMed] [Google Scholar]
- Merchant B., Hraba T. Lymphoid cells producing antibody against simple haptens: detection and enumeration. Science. 1966 Jun 3;152(3727):1378–1379. doi: 10.1126/science.152.3727.1378. [DOI] [PubMed] [Google Scholar]
- Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modabber F., Morikawa S., Coons A. H. Antigen-binding cells in normal mouse thymus. Science. 1970 Dec 4;170(3962):1102–1104. doi: 10.1126/science.170.3962.1102. [DOI] [PubMed] [Google Scholar]
- Mosier D. E., Coppleson L. W. A THREE-CELL INTERACTION REQUIRED FOR THE INDUCTION OF THE PRIMARY IMMUNE RESPONSE in vitro. Proc Natl Acad Sci U S A. 1968 Oct;61(2):542–547. doi: 10.1073/pnas.61.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ONOUE K., YAGI Y., PRESSMAN D. MULTIPLICITY OF ANTIBODY PROTEINS IN RABBIT ANTI-P-AZOBENZENEARSONATE SERA. J Immunol. 1964 Feb;92:173–184. [PubMed] [Google Scholar]
- Paul W. E., Katz D. H., Goidl E. A., Benacerraf B. Carrier function in anti-hapten immune responses. II. Specific properties of carrier cells capable of enhancing anti-hapten antibody responses. J Exp Med. 1970 Aug 1;132(2):283–299. doi: 10.1084/jem.132.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pernis B., Forni L., Amante L. Immunoglobulin spots on the surface of rabbit lymphocytes. J Exp Med. 1970 Nov;132(5):1001–1018. doi: 10.1084/jem.132.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajewsky K., Schirrmacher V., Nase S., Jerne N. K. The requirement of more than one antigenic determinant for immunogenicity. J Exp Med. 1969 Jun 1;129(6):1131–1143. doi: 10.1084/jem.129.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schechter I. Antigenic competition between polypeptidyl determinants in normal and tolerant rabbits. J Exp Med. 1968 Feb 1;127(2):237–250. doi: 10.1084/jem.127.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer G. M., Cudkowicz G. Distinct events in the immune response elicited by transferred marrow and thymus cells. I. Antigen requirements and priferation of thymic antigen-reactive cells. J Exp Med. 1969 Dec 1;130(6):1243–1261. doi: 10.1084/jem.130.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulitzeanu D., Naor D. The affinity of radioiodinated BSA for lymphoid cells. II. Binding of 125I-BSA to lymphoid cells of normal mice. Int Arch Allergy Appl Immunol. 1969;35(6):564–578. doi: 10.1159/000230210. [DOI] [PubMed] [Google Scholar]
- Taylor R. B. Immune paralysis of thymus cells by bovine serum albumin. Nature. 1968 Nov 9;220(5167):611–611. doi: 10.1038/220611a0. [DOI] [PubMed] [Google Scholar]
- Urbain-Vansanten G. Concomitant synthesis, in separate cells, of non-reactive immunoglobulins and specific antibodies after immunization with tobacco mosaic virus. Immunology. 1970 Nov;19(5):783–797. [PMC free article] [PubMed] [Google Scholar]
- Warner N. L., Byrt P., Ada G. L. Blocking of the lymphocyte antigen receptor site with anti-immunoglobulin sera in vitro. Nature. 1970 Jun 6;226(5249):942–943. doi: 10.1038/226942a0. [DOI] [PubMed] [Google Scholar]
- Weigle W. O. The induction of a hyporesponsive state to hemocyanin. J Immunol. 1966 Feb;96(2):319–323. [PubMed] [Google Scholar]
- Yoshimura M., Cinader B. The effect of tolerance on the specificity of the antibody response: antibody to oxazolonated albumin of animals tolerant to the protein carrier. J Immunol. 1966 Dec;97(6):959–968. [PubMed] [Google Scholar]
