Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1971 Nov 30;134(6):1431–1441. doi: 10.1084/jem.134.6.1431

SIGNIFICANCE OF BIVALENCE OF ANTIBODY IN VIRAL NEUTRALIZATION

Robert W Rosenstein 1, Alfred Nisonoff 1, Jonathan W Uhr 1
PMCID: PMC2139105  PMID: 5166611

Abstract

The role of bivalence of antibody in its capacity to neutralize virus was studied with rabbit antibodies to the bacteriophage, φX174. Univalent Fab or Fab' fragments of IgG isolated from antiviral antisera obtained early in the immunization schedule had virtually no activity compared to that of the intact IgG. When the antibodies were isolated from antisera of the same rabbits several months later, the univalent fragments and IgG were essentially equal in activity. The results are interpreted on the basis that an IgG molecule, because of its bivalence, has a higher effective combining affinity (avidity) than a univalent fragment. After prolonged immunization, however, the affinity of univalent antibody becomes sufficiently high that it exceeds a threshold value, above which further increase in affinity, through bivalence, is no longer significant. The results could explain the variability in relative effectiveness of univalent antibodies observed in previous studies. These data, and the fact that F(ab')2 fragments from either "early" or "late" antisera were as effective as IgG, indicate that fragment Fc is not a significant factor in neutralization. No differences in dissociation from the virus of univalent antibody from early and late antisera could be demonstrated by dilution at temperatures up to 47°C. The attachment at sites of neutralization on the virus appears to be functionally almost irreversible in this system.

Full Text

The Full Text of this article is available as a PDF (546.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMIRAIAN K., LEIKHIM E. J. Preparation and properties of antibodies to sheep ervthrocvtes. J Immunol. 1961 Sep;87:301–309. [PubMed] [Google Scholar]
  2. Ashe W. K., Mage M., Mage R., Notkins A. L. Neutralization and sensitization of herpes simplex virus with antibody fragments from rabbits of different allotypes. J Immunol. 1968 Sep;101(3):500–504. [PubMed] [Google Scholar]
  3. Ashe W. K., Mage M., Mage R., Notkins A. L. Neutralization and sensitization of herpes simplex virus with antibody fragments from rabbits of different allotypes. J Immunol. 1968 Sep;101(3):500–504. [PubMed] [Google Scholar]
  4. Ashe W. K., Notkins A. L. Neutralization of an infectious herpes simplex virus-antibody complex by anti-gamma-globulin. Proc Natl Acad Sci U S A. 1966 Aug;56(2):447–451. doi: 10.1073/pnas.56.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CREMER N. E., RIGGS J. L., FUJIMOTO F. Y., HAGENS S. J., OTA M. I., LENNETTE E. H. NEUTRALIZING ACTIVITY OF FRAGMENTS OBTAINED BY PAPAIN DIGESTION OF VIRAL ANTIBODY. J Immunol. 1964 Aug;93:283–292. [PubMed] [Google Scholar]
  6. Daniels C. A., Borsos T., Rapp H. J., Snyderman R., Notkins A. L. Neutralization of sensitized virus by purified components of complement. Proc Natl Acad Sci U S A. 1970 Mar;65(3):528–535. doi: 10.1073/pnas.65.3.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniels C. A., Borsos T., Rapp H. J., Snyderman R., Notkins A. L. Neutralization of sensitized virus by the fourth component of complement. Science. 1969 Aug 1;165(3892):508–509. doi: 10.1126/science.165.3892.508. [DOI] [PubMed] [Google Scholar]
  8. Dudley M. A., Henkens R. W., Rowlands D. T., Jr Kinetics of neutralization of bacteriophage f2 by rabbit gamma-G-antibodies. Proc Natl Acad Sci U S A. 1970 Jan;65(1):88–95. doi: 10.1073/pnas.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
  10. Finkelstein M. S., Uhr J. W. Antibody formation. V. The avidity of gamma-M and gamma-G guinea pig antibodies to bacteriophage phi-x 174. J Immunol. 1966 Nov;97(5):565–576. [PubMed] [Google Scholar]
  11. GOODMAN J. W., DONCH J. J. NEUTRALIZATION OF BACTERIOPHAGE BY INTACT AND DEGRADED RABBIT ANTIBODY. J Immunol. 1964 Jul;93:96–100. [PubMed] [Google Scholar]
  12. GREENBURY C. L., MOORE D. H., NUNN L. A. THE REACTION WITH RED CELLS OF 7S RABBIT ANTIBODY, ITS SUB-UNITS AND THEIR RECOMBINANTS. Immunology. 1965 Apr;8:420–431. [PMC free article] [PubMed] [Google Scholar]
  13. Goodman J. W., Donch J. J. Phage-neutralizing activity in light polypeptide chains of rabbit antibody. Immunochemistry. 1965 Dec;2(4):351–357. doi: 10.1016/0019-2791(65)90035-2. [DOI] [PubMed] [Google Scholar]
  14. Hampar B., Notkins A. L., Mage M., Keehn M. A. Heterogeneity in the properties of 7 S and 19S rabbit-neutralizing antibodies to herpes simplex virus. J Immunol. 1968 Mar;100(3):586–593. [PubMed] [Google Scholar]
  15. JERNE N. K., AVEGNO P. The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation. J Immunol. 1956 Mar;76(3):200–208. [PubMed] [Google Scholar]
  16. KJELLEN L. REACTIONS BETWEEN ADENOVIRUS ANTIGENS AND PAPAIN DIGESTED RABBIT IMMUNE GLOBULIN. Arch Gesamte Virusforsch. 1964;14:189–200. [PubMed] [Google Scholar]
  17. Kekwick R. A. The serum proteins in multiple myelomatosis. Biochem J. 1940 Sep;34(8-9):1248–1257. doi: 10.1042/bj0341248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keller R. The stability of neutralization of poliovirus by native antibody and enzymatically derived fragments. J Immunol. 1966 Jan;96(1):96–106. [PubMed] [Google Scholar]
  19. Kjellén L. On the capacity of pepsin-digested antibody to neutralize adenovirus infectivity. Immunology. 1965 Jun;8(6):557–565. [PMC free article] [PubMed] [Google Scholar]
  20. Klinman N. R., Long C. A., Karush F. The role of antibody bivalence in the neutralization of bacteriophage. J Immunol. 1967 Dec;99(6):1128–1133. [PubMed] [Google Scholar]
  21. LEVY H. B., SOBER H. A. A simple chromatographic method for preparation of gamma globulin. Proc Soc Exp Biol Med. 1960 Jan;103:250–252. doi: 10.3181/00379727-103-25476. [DOI] [PubMed] [Google Scholar]
  22. Linscott W. D., Levinson W. E. Complement components required for virus neutralization by early immunoglobulin antibody. Proc Natl Acad Sci U S A. 1969 Oct;64(2):520–527. doi: 10.1073/pnas.64.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MANDEL B. Reversibility of the reaction between polio-virus and neutralizing antibody of rabbit origin. Virology. 1961 Jul;14:316–328. doi: 10.1016/0042-6822(61)90317-8. [DOI] [PubMed] [Google Scholar]
  24. MUSCHEL L. H., TOUSSAINT A. J. Studies on the bacteriophage-neutralizing activity of serums. II. Comparison of normal and immune phage-neutralizing antibodies. J Immunol. 1962 Jul;89:35–40. [PubMed] [Google Scholar]
  25. NISONOFF A. ENZYMATIC DIGESTION OF RABBIT GAMMA GLOBULIN AND ANTIBODY AND CHROMATOGRAPHY OF DIGESTION PRODUCTS. Methods Med Res. 1964;10:134–141. [PubMed] [Google Scholar]
  26. Notkins A. L., Mage M., Ashe W. K., Mahar S. Neutralization of sensitized lactic dehydrogenase virus by anti-gammglobulin. J Immunol. 1968 Feb;100(2):314–320. [PubMed] [Google Scholar]
  27. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paul W., Benacerraf B. Problems encountered in double diffusion analysis in agar of hapten specific immune systems. I. Complement dependent precipitation. J Immunol. 1965 Dec;95(6):1067–1073. [PubMed] [Google Scholar]
  29. Rowlands D. T., Jr Precipitation and neutralization of bacteriophage f2 by rabbit antibodies. J Immunol. 1967 May;98(5):958–964. [PubMed] [Google Scholar]
  30. Stemke G. W., Lennox E. S. Bacteriophage neutralizing activity of fragments derived from rabbit immunoglobulin by papain digestion. J Immunol. 1967 Jan;98(1):94–101. [PubMed] [Google Scholar]
  31. TANIGUCHI S., YOSHINO K. STUDIES ON THE NEUTRALIZATION OF HERPES SIMPLEX VIRUS. II. ANALYSIS OF COMPLEMENT AS THE ANTIBODY-POTENTIATING FACTOR. Virology. 1965 May;26:54–60. doi: 10.1016/0042-6822(65)90025-5. [DOI] [PubMed] [Google Scholar]
  32. TARANTA A., FRANKLIN E. C. Complement fixation by antibody fragments. Science. 1961 Dec 15;134(3494):1981–1982. doi: 10.1126/science.134.3494.1981. [DOI] [PubMed] [Google Scholar]
  33. VOGT A., KOPP R., MAASS G., REICH L. POLIOVIRUS TYPE 1: NEUTRALIZATION BY PAPAIN-DIGESTED ANTIBODIES. Science. 1964 Sep 25;145(3639):1447–1448. doi: 10.1126/science.145.3639.1447. [DOI] [PubMed] [Google Scholar]
  34. WEIGLE W. O., MAURER P. H. The effect of complements on soluble antigen-antibody complexes. J Immunol. 1957 Sep;79(3):211–222. [PubMed] [Google Scholar]
  35. YOSHINO K., TANIGUCHI S. STUDIES ON THE NEUTRALIZATION OF HERPES SIMPLEX VIRUS. I. APPEARANCE OF NEUTRALIZING ANTIBODIES HAVING DIFFERENT GRADES OF COMPLEMENT REQUIREMENT. Virology. 1965 May;26:44–53. doi: 10.1016/0042-6822(65)90024-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES