Abstract
Cell surface proteins of normal and neoplastic lymphocytes were labeled with iodide-125I by lactoperoxidase-catalyzed iodination. Incubation of 125I-labeled iodide cells in vitro resulted in the release of iodinated surface proteins at a rapid rate which was dependent on cellular respiration and protein synthesis. Comparisons by disc electrophoresis showed a marked similarity between urea-soluble surface proteins extracted from iodinated cells and iodinated material released by the cells during in vitro incubation. The rate of release of cell surface proteins from thymus cells was three times faster than that of spleen cells or bone marrow-derived thoracic duct lymphocytes. In addition, different proteins were released at different rates as evidenced by the rate of release of 125I of rabbit anti-mouse immunoglobulin specifically bound to mouse spleen cells and comparisons by disc electrophoresis of urea-soluble iodinated surface proteins extracted from cells before and after incubation. The results suggest that a dynamic state exists at the cell surface. The possible role of the release of cell surface proteins in cell regulation and communication is discussed.
Full Text
The Full Text of this article is available as a PDF (668.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADA G. L., NOSSAL G. J., PYE J. ANTIGENS IN IMMUNITY. III. DISTRIBUTION OF IODINATED ANTIGENS FOLLOWING INJECTION INTO RATS VIA THE HIND FOOTPADS. Aust J Exp Biol Med Sci. 1964 Jun;42:295–310. [PubMed] [Google Scholar]
- Baur S., Vitetta E. S., Sherr C. J., Schenkein I., Uhr J. W. Isolation of heavy and light chains of immunoglobulin from the surfaces of lymphoid cells. J Immunol. 1971 Apr;106(4):1133–1135. [PubMed] [Google Scholar]
- Claman H. N., Chaperon E. A., Triplett R. F. Immunocompetence of transferred thymus-marrow cell combinations. J Immunol. 1966 Dec;97(6):828–832. [PubMed] [Google Scholar]
- Cohn Z. A. The regulation of pinocytosis in mouse macrophages. I. Metabolic requirements as defined by the use of inhibitors. J Exp Med. 1966 Oct 1;124(4):557–571. doi: 10.1084/jem.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GASIC G., GASIC T. Removal and regeneration of the cell coating in tumour cells. Nature. 1962 Oct 13;196:170–170. doi: 10.1038/196170a0. [DOI] [PubMed] [Google Scholar]
- Gold E. R., Fudenberg H. H. Chromic chloride: a coupling reagent for passive hemagglutination reactions. J Immunol. 1967 Nov;99(5):859–866. [PubMed] [Google Scholar]
- HOYLE L. The entry of myxoviruses into the cell. Cold Spring Harb Symp Quant Biol. 1962;27:113–121. doi: 10.1101/sqb.1962.027.001.014. [DOI] [PubMed] [Google Scholar]
- Horibata K., Harris A. W. Mouse myelomas and lymphomas in culture. Exp Cell Res. 1970 Apr;60(1):61–77. doi: 10.1016/0014-4827(70)90489-1. [DOI] [PubMed] [Google Scholar]
- Kahane I., Razin S. Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii. Biochim Biophys Acta. 1969 Jun 3;183(1):79–89. doi: 10.1016/0005-2736(69)90131-x. [DOI] [PubMed] [Google Scholar]
- Kaplan D. M., Criddle R. S. Membrane structural proteins. Physiol Rev. 1971 Apr;51(2):249–272. doi: 10.1152/physrev.1971.51.2.249. [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Yamashina I. Metabolic studies of rat liver plasma membranes using D-(1-14C)glucosamine. Biochim Biophys Acta. 1971 Feb 2;225(2):234–238. doi: 10.1016/0005-2736(71)90216-1. [DOI] [PubMed] [Google Scholar]
- Kiehn E. D., Holland J. J. Membrane and nonmembrane proteins of mammalian cells. Synthesis, turnover, and size distribution. Biochemistry. 1970 Apr 14;9(8):1716–1728. doi: 10.1021/bi00810a010. [DOI] [PubMed] [Google Scholar]
- MARCUS P. I. Dynamics of surface modification in myxovirus-infected cells. Cold Spring Harb Symp Quant Biol. 1962;27:351–365. doi: 10.1101/sqb.1962.027.001.033. [DOI] [PubMed] [Google Scholar]
- Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchialonis J. J., Edelman G. M. Isolation and characterization of a hemagglutinin from Limulus polyphemus. J Mol Biol. 1968 Mar 14;32(2):453–465. doi: 10.1016/0022-2836(68)90022-3. [DOI] [PubMed] [Google Scholar]
- Miller J. F., Mitchell G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):801–820. doi: 10.1084/jem.128.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman R. L., Ferris B., Hirsch J. G. Macrophage plasma membrane. II. Studies on synthesis and turnover of protein constituents. J Exp Med. 1971 Apr 1;133(4):807–820. doi: 10.1084/jem.133.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
- Parish C. R., Marchalonis J. J. A simple and rapid acrylamide gel method for estimating the molecular weights of proteins and protein subunits. Anal Biochem. 1970 Apr;34(2):436–450. doi: 10.1016/0003-2697(70)90128-4. [DOI] [PubMed] [Google Scholar]
- Winzler R. J. Carbohydrates in cell surfaces. Int Rev Cytol. 1970;29:77–125. doi: 10.1016/s0074-7696(08)60033-9. [DOI] [PubMed] [Google Scholar]
