Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Mar 31;135(4):719–734. doi: 10.1084/jem.135.4.719

GRANULATION TISSUE AS A CONTRACTILE ORGAN

A STUDY OF STRUCTURE AND FUNCTION

G Gabbiani 1, B J Hirschel 1, G B Ryan 1, P R Statkov 1, G Majno 1
PMCID: PMC2139162  PMID: 4336123

Abstract

Contracting granulation tissues contain fibroblasts that develop characteristics typical of smooth muscle: (a) They contain an extensive cytoplasmic fibrillar system. (b) They show immunofluorescent labeling of their cytoplasm with human anti-smooth muscle serum. (c) The nuclei show complicated folds and indentations, indicative of cellular contraction. (d) There are cell-to-cell and cell-to-stroma attachments. (e) It is possible to extract similar quantities of actomyosin (having the same adenosine triphosphatase activity) from granulation tissue and from pregnant rat uterus. (f) Strips of granulation tissue, when tested pharmacologically in vitro, behave similarly to smooth muscle. All these data support the view that, under certain conditions, fibroblasts can differentiate into a cell type structurally and functionally similar to smooth muscle and that this cell, the "myo-fibroblast," plays an important role in connective tissue contraction.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom S., Cancilla P. A. Conformational changes in myocardial nuclei of rats. Circ Res. 1969 Feb;24(2):189–196. doi: 10.1161/01.res.24.2.189. [DOI] [PubMed] [Google Scholar]
  2. Carrel A., Hartmann A. CICATRIZATION OF WOUNDS : I. THE RELATION BETWEEN THE SIZE OF A WOUND AND THE RATE OF ITS CICATRIZATION. J Exp Med. 1916 Nov 1;24(5):429–450. doi: 10.1084/jem.24.5.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEVIS R., JAMES D. W. CLOSE ASSOCIATION BETWEEN ADULT GUINEA-PIG FIBROBLASTS IN TISSUE CULTURE, STUDIED WITH THE ELECTRON MICROSCOPE. J Anat. 1964 Jan;98:63–68. [PMC free article] [PubMed] [Google Scholar]
  4. Finck H. Immunochemical studies on myosin. I. Effects of different methods of preparation on the immunochemical properties of chicken skeletal muscle myosin. Biochim Biophys Acta. 1965 Nov 15;111(1):208–220. doi: 10.1016/0304-4165(65)90487-3. [DOI] [PubMed] [Google Scholar]
  5. GOLDBERG B., GREEN H. AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES. J Cell Biol. 1964 Jul;22:227–258. doi: 10.1083/jcb.22.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gabbiani G., Majno G. Dupuytren's contracture: fibroblast contraction? An ultrastructural study. Am J Pathol. 1972 Jan;66(1):131–146. [PMC free article] [PubMed] [Google Scholar]
  7. Gabbiani G., Ryan G. B., Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971 May 15;27(5):549–550. doi: 10.1007/BF02147594. [DOI] [PubMed] [Google Scholar]
  8. HOFFMANN-BERLING H. Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim Biophys Acta. 1954 Jun;14(2):182–194. doi: 10.1016/0006-3002(54)90157-2. [DOI] [PubMed] [Google Scholar]
  9. HOGAN M. J., FEENEY L. THE ULTRASTRUCTURE OF THE RETINAL VESSELS. III. VASCULAR-GLIAL RELATIONSHIPS. J Ultrastruct Res. 1963 Aug;49:47–64. doi: 10.1016/s0022-5320(63)80035-0. [DOI] [PubMed] [Google Scholar]
  10. Hirschel B. J., Gabbiani G., Ryan G. B., Majno G. Fibroblasts of granulation tissue: immunofluorescent staining with antismooth muscle serum. Proc Soc Exp Biol Med. 1971 Nov;138(2):466–469. doi: 10.3181/00379727-138-35920. [DOI] [PubMed] [Google Scholar]
  11. James D. W., Taylor J. F. The stress developed by sheets of chick fibroblasts in vitro. Exp Cell Res. 1969 Jan;54(1):107–110. doi: 10.1016/0014-4827(69)90299-7. [DOI] [PubMed] [Google Scholar]
  12. Lane B. P. Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J Cell Biol. 1965 Oct;27(1):199–213. doi: 10.1083/jcb.27.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MAJNO G. Contraction of collagen fibres in vivo induced by inflammation. Lancet. 1958 Nov 8;2(7054):994–996. doi: 10.1016/s0140-6736(58)90481-1. [DOI] [PubMed] [Google Scholar]
  14. Majno G., Gabbiani G., Hirschel B. J., Ryan G. B., Statkov P. R. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science. 1971 Aug 6;173(3996):548–550. doi: 10.1126/science.173.3996.548. [DOI] [PubMed] [Google Scholar]
  15. Moss N. S., Benditt E. P. Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta. Lab Invest. 1970 Feb;22(2):166–183. [PubMed] [Google Scholar]
  16. Murphy R. A., Hasselbach W. Calcium ion-dependent myofibrillar adenosine triphosphatase activity correlated with the contractile response. Temperature-induced loss of calcium ion sensitivity. J Biol Chem. 1968 Nov 10;243(21):5656–5662. [PubMed] [Google Scholar]
  17. O'Shea J. D. An ultrastructural study of smooth muscle-like cells in the theca externa of ovarian follicles in the rat. Anat Rec. 1970 Jun;167(2):127–131. doi: 10.1002/ar.1091670202. [DOI] [PubMed] [Google Scholar]
  18. Parker F., Odland G. F. A light microscopic, histochemical and electron microscopic study of experimental atherosclerosis in rabbit coronary artery and a comparison with rabbit aorta atherosclerosis. Am J Pathol. 1966 Mar;48(3):451–481. [PMC free article] [PubMed] [Google Scholar]
  19. Ryan G. B., Grobéty J., Majno G. Postoperative peritoneal adhesions. A study of the mechanisms. Am J Pathol. 1971 Oct;65(1):117–148. [PMC free article] [PubMed] [Google Scholar]
  20. Rüegg J. C. Smooth muscle tone. Physiol Rev. 1971 Jan;51(1):201–248. doi: 10.1152/physrev.1971.51.1.201. [DOI] [PubMed] [Google Scholar]
  21. SELYE H. On the mechanism through which hydrocortisone affects the resistance of tissues to injury; an experimental study with the granuloma pouch technique. J Am Med Assoc. 1953 Jul 25;152(13):1207–1213. doi: 10.1001/jama.1953.63690130001006. [DOI] [PubMed] [Google Scholar]
  22. Stehbens W. E. The basal attachment of endothelial cells. J Ultrastruct Res. 1966 Jun;15(3):389–399. doi: 10.1016/s0022-5320(66)80115-6. [DOI] [PubMed] [Google Scholar]
  23. Van Winkle W., Jr Wound contraction. Surg Gynecol Obstet. 1967 Jul;125(1):131–142. [PubMed] [Google Scholar]
  24. WEIL-MALHERBE H., GREEN R. H. The catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. Biochem J. 1951 Aug;49(3):286–292. [PMC free article] [PubMed] [Google Scholar]
  25. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES