Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Aug 1;136(2):216–226. doi: 10.1084/jem.136.2.216

SPECIFICITY OF THE INFLAMMATORY RESPONSE IN VIRAL ENCEPHALITIS

I. ADOPTIVE IMMUNIZATION OF IMMUNOSUPPRESSED MICE INFECTED WITH SINDBIS VIRUS

Henry F McFarland 1, Diane E Griffin 1, Richard T Johnson 1
PMCID: PMC2139202  PMID: 5043410

Abstract

The viral-induced perivascular inflammatory response in Sindbis virus encephalitis of mice was shown to be immunologically specific. Mice were inoculated intracerebrally with Sindbis virus, and 24 hr later a single dose of cyclophosphamide was given which ablated the inflammatory response. 3 days after virus inoculation, cells and/or sera from specifically and nonspecifically sensitized donor mice were given, and the inflammatory reactions, virus content, and antibody response of recipients were examined 5 days later. Reconstitution of the viral inflammatory response required virus-specific sensitized lymph node cells and was enhanced when these lymph node cells were combined with bone marrow cells. Reconstitution was not achieved with Sindbis virus immune serum even when combined with nonspecifically sensitized cells. Combination of immune serum with Sindbis virus-sensitized cells did not produce an accentuation of the reaction. In distinction, reconstitution of the inflammatory reaction surrounding the stab wound was reconstituted with bone marrow cells from mice inoculated with Sindbis virus or control antigens. Reconstitution of the perivascular reaction was associated with a reduction in brain virus content. Although the transfer of Sindbis virus-sensitized lymph node cells and bone marrow cells resulted in the limited production of neutralizing antibody in the immunosuppressed recipient, the reduction in virus was significantly greater with the transfers of Sindbis virus-sensitized lymph node cells than with the passive transfer of immune serum alone.

Full Text

The Full Text of this article is available as a PDF (767.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht P. Pathogenesis of neurotropic arbovirus infections. Curr Top Microbiol Immunol. 1968;43:44–91. doi: 10.1007/978-3-642-46118-7_2. [DOI] [PubMed] [Google Scholar]
  2. BERGE T. O., GLEISER C. A., GOCHENOUR W. S., Jr, MIESSE M. L., TIGERTT W. D. Studies on the virus of Venezuelan equine encephalomyelitis. II. Modification by specific immune serum of response of central nervous system of mice. J Immunol. 1961 Nov;87:509–517. [PubMed] [Google Scholar]
  3. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. 3. Regression infectious foci. J Exp Med. 1971 May 1;133(5):1090–1104. doi: 10.1084/jem.133.5.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. II. Passive transfer of recovery mechanisms with immune lymphoid cells. J Exp Med. 1971 May 1;133(5):1074–1089. doi: 10.1084/jem.133.5.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilden D. H., Cole G. A., Nathanson N. Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. II. Adoptive immunization of virus carriers. J Exp Med. 1972 Apr 1;135(4):874–889. doi: 10.1084/jem.135.4.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Johnson R. T., McFarland H. F., Levy S. E. Age-dependent resistance to viral encephalitis: studies of infections due to Sindbis virus in mice. J Infect Dis. 1972 Mar;125(3):257–262. doi: 10.1093/infdis/125.3.257. [DOI] [PubMed] [Google Scholar]
  7. Lundstedt C. Interaction between antigenically different cells. Virus-induced cytotoxicity by immune lymphoid cells in vitro. Acta Pathol Microbiol Scand. 1969;75(1):139–152. [PubMed] [Google Scholar]
  8. McGregor D. D., Koster F. T. The mediator of cellular immunity. IV. Cooperation between lymphocytes and mononuclear phagocytes. Cell Immunol. 1971 Aug;2(4):317–325. doi: 10.1016/0008-8749(71)90066-9. [DOI] [PubMed] [Google Scholar]
  9. Oldstone M. B., Dixon F. J. Pathogenesis of chronic disease associated with persistent lymphocytic choriomeningitis viral infection. II. Relationship of the anti-lymphocytic choriomeningitis immune response to tissue injury in chronic lymphocytic choriomeningitis disease. J Exp Med. 1970 Jan 1;131(1):1–19. doi: 10.1084/jem.131.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oldstone M. B., Dixon F. J. Tissue injury in lymphocytic choriomeningitis viral infection: virus-induced immunologically specific release of a cytotoxic factor from immune lymphoid cells. Virology. 1970 Dec;42(4):805–813. doi: 10.1016/0042-6822(70)90330-2. [DOI] [PubMed] [Google Scholar]
  11. Parrott D. M., De Sousa M. A., Fachet J., Wallis V., Leuchars E., Davies A. J. The response of normal, thymectomized and reconstituted mice in contact sensitivity. Clin Exp Immunol. 1970 Sep;7(3):387–393. [PMC free article] [PubMed] [Google Scholar]
  12. Rivers T. M. Some General Aspects of Pathological Conditions Caused by Filterable Viruses. Am J Pathol. 1928 Mar;4(2):91–124.15. [PMC free article] [PubMed] [Google Scholar]
  13. Rosenberg G. L., Farber P. A., Notkins A. L. In vitro stimulation of sensitized lymphocytes by herpes simplex virus and vaccinia virus. Proc Natl Acad Sci U S A. 1972 Mar;69(3):756–760. doi: 10.1073/pnas.69.3.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Speel L. F., Osborn J. E., Walker D. L. An immuno-cytopathogenic interaction between sensitized leukocytes and epithelial cells carrying a persistent noncytocidal myxovirus infection. J Immunol. 1968 Sep;101(3):409–417. [PubMed] [Google Scholar]
  15. TAYLOR R. M., HURLBUT H. S., WORK T. H., KINGSTON J. R., FROTHINGHAM T. E. Sindbis virus: a newly recognized arthropodtransmitted virus. Am J Trop Med Hyg. 1955 Sep;4(5):844–862. doi: 10.4269/ajtmh.1955.4.844. [DOI] [PubMed] [Google Scholar]
  16. Webb H. E., Smith C. E. Relation of immune response to development of central nervous system lesions in virus infections of man. Br Med J. 1966 Nov 12;2(5523):1179–1181. doi: 10.1136/bmj.2.5523.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Webb H. E., Wight D. G., Platt G. S., Smith C. E. Langat virus encephalitis in mice. I. The effect of the administration of specific antiserum. J Hyg (Lond) 1968 Sep;66(3):343–354. doi: 10.1017/s0022172400041218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williams R. M., Waksman B. H. Thymus-derived cells in the early phase of delayed tuberculin reactions. J Immunol. 1969 Dec;103(6):1435–1437. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES