Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 May 1;137(5):1180–1200. doi: 10.1084/jem.137.5.1180

GENETIC CONTROL OF THE IMMUNE RESPONSE

FREQUENCY AND CHARACTERISTICS OF ANTIGEN-BINDING CELLS IN HIGH AND LOW RESPONDER MICE

Günter J Hämmerling 1, Tohru Masuda 1, Hugh O McDevitt 1
PMCID: PMC2139236  PMID: 4121927

Abstract

The influence of immunization with (T,G)-A--L on the frequency and characteristics of [125I] (T,G)-A--L-binding cells (ABC) was investigated in high and low responder mice, whose ability to respond to (T,G)-A--L is under control of an H-2-linked immune response gene, Ir-1. Unimmunized high and low responder mice have about the same number of ABC in spleen and lymph nodes (6–12 ABC/104). However, after immunization with (T,G)-A--L in aqueous solution, ABC in high responders increase to a much greater extent than they do in low responders. By inhibition of ABC with class-specific anti-Ig sera, it was demonstrated that in nonimmune and primed mice antigen is bound to IgM receptors, which is in agreement with the exclusive production of 19S anti-(T,G)-A--L antibody in primed animals. In contrast, after secondary challenge with antigen, ABC in high and low responder mice have mainly IgG receptors, although under the conditions used for immunization, low responders are not able to produce detectable amounts of 7S anti-(T,G)-A--L antibody. From these results and from the evidence that low responders very probably have a T cell defect, it is suggested that the switchover from IgM to IgG precursor cells can be induced by antigen itself, without the action of specific T cells. Furthermore, the failure of marked proliferation of ABC in low responders after antigenic stimulation is explained by the lack of stimulation by specific T cells. By independent methods it has been shown that all ABC detected in this study are B cells. Preliminary experiments indicate that purified peripheral T cells bind antigen, but much less per cell than do B cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Humphrey J. H., Askonas B. A., McDevitt H. O., Nossal G. J. Correlation of grain counts with radioactivity (125I and tritium) in autoradiography. Exp Cell Res. 1966 Mar;41(3):557–572. doi: 10.1016/s0014-4827(66)80106-4. [DOI] [PubMed] [Google Scholar]
  2. Basten A., Miller J. F., Warner N. L., Pye J. Specific inactivation of thymus-derived (T) and non-thymus-derived (B) lymphocytes by 125I-labelled antigen. Nat New Biol. 1971 May 26;231(21):104–106. doi: 10.1038/newbio231104a0. [DOI] [PubMed] [Google Scholar]
  3. Basten A., Sprent J., Miller J. F. Receptor for antibody-antigen complexes used to separate T cells from B cells. Nat New Biol. 1972 Feb 9;235(58):178–180. doi: 10.1038/newbio235178a0. [DOI] [PubMed] [Google Scholar]
  4. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  5. Davie J. M., Paul W. E., Green I. Genetic control of the immune response of inbred guinea pigs to 2,4-dinitrophenyl guinea pig albumin. Frequency of antigen-binding lymphocytes and avidity of antibodies secreted by plaque-forming cells. J Immunol. 1972 Aug;109(2):193–200. [PubMed] [Google Scholar]
  6. Davie J. M., Paul W. E. Receptors on immunocompetent cells. II. Specificity and nature of receptors on dinitrophenylated guinea pig albumin- 125 I-binding lymphocytes of normal guinea pigs. J Exp Med. 1971 Aug 1;134(2):495–516. doi: 10.1084/jem.134.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davie J. M., Rosenthal A. S., Paul W. E. Receptors on immunocompetent cells. 3. Specificity and nature of receptors on dinitrophenylated guinea pig albumin- 125 I-binding cells of immunized guinea pigs. J Exp Med. 1971 Aug 1;134(2):517–531. doi: 10.1084/jem.134.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunham E. K., Unanue E. R., Benacerraf B. Antigen binding and capping by lymphocytes of genetic nonresponder mice. J Exp Med. 1972 Aug 1;136(2):403–408. doi: 10.1084/jem.136.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dwyer J. M., Mackay I. R. Validation of autoradiography for recognition of antigen-binding lymphocytes in blood and lymphoid tissues. Quantitation and specificity of binding. Clin Exp Immunol. 1972 Apr;10(4):581–597. [PMC free article] [PubMed] [Google Scholar]
  10. Dwyer J. M., Warner N. L., Mackay I. R. Specificity and nature of the antigen-combining sites on fetal and mature thymus lymphocytes. J Immunol. 1972 May;108(5):1439–1446. [PubMed] [Google Scholar]
  11. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grey H. M., Kubo R. T., Cerottini J. C. Thymus-derived (T) cell immunoglobulins. Presence of a receptor site for IgG and absence of large amounts of "buried" Ig determinants on T cells. J Exp Med. 1972 Nov 1;136(5):1323–1328. doi: 10.1084/jem.136.5.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grumet F. C. Genetic control of the immune response. A selective defect in immunologic (IgG) memory in nonresponder mice. J Exp Med. 1972 Jan;135(1):110–125. doi: 10.1084/jem.135.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haskill J. S., Elliott B. E., Kerbel R., Axelrad M. A., Eidinger D. Classification of thymus-derived and marrow-derived lymphocytes by demonstration of their antigen-binding characteristics. J Exp Med. 1972 Jun 1;135(6):1410–1415. doi: 10.1084/jem.135.6.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hämmerling U., Rajewsky K. Evidence for surface-associated immunoglobulin on T and B lymphocytes. Eur J Immunol. 1971 Dec;1(6):447–452. doi: 10.1002/eji.1830010608. [DOI] [PubMed] [Google Scholar]
  16. Karnovsky M. J., Unanue E. R., Leventhal M. Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties. J Exp Med. 1972 Oct 1;136(4):907–930. doi: 10.1084/jem.136.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marchalonis J. J., Cone R. E., Atwell J. L. Isolation and partial characterization of lymphocyte surface immunoglobulins. J Exp Med. 1972 Apr 1;135(4):956–971. doi: 10.1084/jem.135.4.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDevitt H. O., Benacerraf B. Genetic control of specific immune responses. Adv Immunol. 1969;11:31–74. doi: 10.1016/s0065-2776(08)60477-0. [DOI] [PubMed] [Google Scholar]
  19. McDevitt H. O. Genetic control of the antibody response. 3. Qualitative and quantitative characterization of the antibody response to (T,G)-A--L in CBA and C57 mice. J Immunol. 1968 Mar;100(3):485–492. [PubMed] [Google Scholar]
  20. McDevitt H. O., Sela M. Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice. J Exp Med. 1965 Sep 1;122(3):517–531. doi: 10.1084/jem.122.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitchell G. F., Grumet F. C., McDevitt H. O. Genetic control of the immune response. The effect of thymectomy on the primary and secondary antibody response of mice to poly-L(tyr, glu)-poly-D, L-ala--poly-L-lys. J Exp Med. 1972 Jan;135(1):126–135. doi: 10.1084/jem.135.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mäkelä O., Cross A. M. The diversity and specialization of immunocytes. Prog Allergy. 1970;14:145–207. doi: 10.1159/000289379. [DOI] [PubMed] [Google Scholar]
  23. NOSSAL G. J., SZENBERG A., ADA G. L., AUSTIN C. M. SINGLE CELL STUDIES ON 19S ANTIBODY PRODUCTION. J Exp Med. 1964 Mar 1;119:485–502. doi: 10.1084/jem.119.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nossal G. J., Lewis H. Variation in accessible cell surface immunoglobulin among antibody-firming cells. J Exp Med. 1972 Jun 1;135(6):1416–1422. doi: 10.1084/jem.135.6.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nossal G. J., Warner N. L., Lewis H., Sprent J. Quantitative features of a sandwich radioimmunolabeling technique for lymphocyte surface receptors. J Exp Med. 1972 Feb 1;135(2):405–428. doi: 10.1084/jem.135.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Perkins W. D., Karnovsky M. J., Unanue E. R. An ultrastructural study of lymphocytes with surface-bound immunoglobulin. J Exp Med. 1972 Feb 1;135(2):267–276. doi: 10.1084/jem.135.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pernis B., Forni L., Amante L. Immunoglobulin spots on the surface of rabbit lymphocytes. J Exp Med. 1970 Nov;132(5):1001–1018. doi: 10.1084/jem.132.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pierce C. W., Solliday S. M., Asofsky R. Immune responses in vitro. IV. Suppression of primary M, G, and A plaque-forming cell responses in mouse spleen cell cultures by class-specific antibody to mouse immunoglobulins. J Exp Med. 1972 Mar 1;135(3):675–697. doi: 10.1084/jem.135.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pierce C. W., Solliday S. M., Asofsky R. Immune responses in vitro. V. Suppression of M, G, and A plaque-forming cell responses in cultures of primed mouse spleen cells by class-specific antibody to mouse immunoglobulins. J Exp Med. 1972 Mar 1;135(3):698–710. doi: 10.1084/jem.135.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rabellino E., Colon S., Grey H. M., Unanue E. R. Immunoglobulins on the surface of lymphocytes. I. Distribution and quantitation. J Exp Med. 1971 Jan 1;133(1):156–167. doi: 10.1084/jem.133.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roelants G. E., Askonas B. A. Cell cooperation in antibody induction. The susceptibility of helper cells to specific lethal radioactive antigen. Eur J Immunol. 1971 Jun;1(3):151–157. doi: 10.1002/eji.1830010302. [DOI] [PubMed] [Google Scholar]
  32. Takahashi T., Old L. J., McIntire K. R., Boyse E. A. Immunoglobulin and other surface antigens of cells of the immune system. J Exp Med. 1971 Oct 1;134(4):815–832. doi: 10.1084/jem.134.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tyan M. L., McDevitt H. O. Antibody responses to two synthetic polypeptides: the role of the thymic epithelial reticulum. J Immunol. 1970 Nov;105(5):1190–1193. [PubMed] [Google Scholar]
  34. Unanue E. R. Antigen-binding cells. I. Their idenification and role in the immune response. J Immunol. 1971 Oct;107(4):1168–1174. [PubMed] [Google Scholar]
  35. Vitetta E. S., Bianco C., Nussenzweig V., Uhr J. W. Cell surface immunoglobulin. IV. Distribution among thymocytes, bone mrrow cells, and their derived populations. J Exp Med. 1972 Jul 1;136(1):81–93. doi: 10.1084/jem.136.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Walters C. S., Wigzell H. Demonstration of heavy and light chain antigenic determinants on the cell-bound receptor for antigen. Similarities between membrane-attached and humoral antibodies produced by the same cell. J Exp Med. 1970 Dec 1;132(6):1233–1249. doi: 10.1084/jem.132.6.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang A. C., Wilson K. S., Hopper J. E., Fudenberg H. H., Nisonoff A. Evidence for control of synthesis of the varible regions of the heavy chains of immunoglobulins G and M by the same gene. Proc Natl Acad Sci U S A. 1970 Jun;66(2):337–343. doi: 10.1073/pnas.66.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Warner N. L., Byrt P., Ada G. L. Blocking of the lymphocyte antigen receptor site with anti-immunoglobulin sera in vitro. Nature. 1970 Jun 6;226(5249):942–943. doi: 10.1038/226942a0. [DOI] [PubMed] [Google Scholar]
  39. Wekerle H., Lonai P., Feldman M. Fractionation of antigen reactive cells on a cellular immunoadsorbent: factors determining recognition of antigens by T-lymphocytes. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1620–1624. doi: 10.1073/pnas.69.6.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wigzell H., Andersson B. Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J Exp Med. 1969 Jan 1;129(1):23–36. doi: 10.1084/jem.129.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson J. D., Miller J. F. T and B rosette-forming cells. Eur J Immunol. 1971 Dec;1(6):501–503. doi: 10.1002/eji.1830010622. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES