Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Sep 1;136(3):514–531. doi: 10.1084/jem.136.3.514

IN VITRO ADHERENCE OF SOLUBLE IMMUNE COMPLEXES TO MACROPHAGES

William P Arend 1, Mart Mannik 1
PMCID: PMC2139253  PMID: 5050722

Abstract

The adherence of soluble immune complexes to stimulated alveolar macrophages was studied in vitro using HSA-anti-HSA complexes prepared in antigen excess. Those complexes containing more than two molecules of antibody preferentially adhered to macrophages in the absence of complement. Free γG in less than physiological concentrations inhibited the adherence of complexes, and the presence of complement did not significantly alter this inhibition. Complexes prepared with reduced and alkylated antibodies showed a decreased adherence. The strength of binding of soluble complexes to macrophages and their efficiency in fixing complement were greater than seen with small aggregates of homologous γG. These differences in biological properties were observed even though the immune complexes and aggregates contained comparable numbers of γG molecules. The γG receptor on rabbit macrophages exhibited species specificity. Pretreatment of macrophages with proteolytic enzymes led to adherence of larger amounts of soluble complexes. These observations suggest that the strength of binding of soluble immune complexes to macrophages and their efficiency in fixing complement are not determined solely by a random summation of individual binding sites. It is proposed that conformational changes in the γG antibodies or a specific molecular arrangement in the lattice work of complexes containing large protein antigens may influence the biological properties of the soluble complexes.

Full Text

The Full Text of this article is available as a PDF (992.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson N., Gelfand E. W., Jandl J. H., Rosen F. S. The interaction between human monocytes and red cells. Specificity for IgG subclasses and IgG fragments. J Exp Med. 1970 Dec 1;132(6):1207–1215. doi: 10.1084/jem.132.6.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arend W. P., Mannik M. Studies on antigen-antibody complexes. II. Quantification of tissue uptake of soluble complexes in normal and complement-depleted rabbits. J Immunol. 1971 Jul;107(1):63–75. [PubMed] [Google Scholar]
  3. Augener W., Grey H. M. Studies on the mechanism of heat aggregation of human gamma-G. J Immunol. 1970 Oct;105(4):1024–1030. [PubMed] [Google Scholar]
  4. Bennett W. E., Cohn Z. A. The isolation and selected properties of blood monocytes. J Exp Med. 1966 Jan 1;123(1):145–160. doi: 10.1084/jem.123.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berken A., Benacerraf B. Properties of antibodies cytophilic for macrophages. J Exp Med. 1966 Jan 1;123(1):119–144. doi: 10.1084/jem.123.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cathou R. E., Kulczycki A., Jr, Haber E. Structural features of gamma-immunoglobulin, antibody, and their fragments. Circular dichroism studies. Biochemistry. 1968 Nov;7(11):3958–3964. doi: 10.1021/bi00851a024. [DOI] [PubMed] [Google Scholar]
  7. Cochrane C. G., Müller-Eberhard H. J., Aikin B. S. Depletion of plasma complement in vivo by a protein of cobra venom: its effect on various immunologic reactions. J Immunol. 1970 Jul;105(1):55–69. [PubMed] [Google Scholar]
  8. Cohen A. B., Cline M. J. The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics. J Clin Invest. 1971 Jul;50(7):1390–1398. doi: 10.1172/JCI106622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FEINSTEIN A., ROWE A. J. MOLECULAR MECHANISM OF FORMATION OF AN ANTIGEN-ANTIBODY COMPLEX. Nature. 1965 Jan 9;205:147–149. doi: 10.1038/205147a0. [DOI] [PubMed] [Google Scholar]
  10. Gilliland B. C., Leddy J. P., Vaughan J. H. The detection of cell-bound antibody on complement-coated human red cells. J Clin Invest. 1970 May;49(5):898–906. doi: 10.1172/JCI106309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green N. M. Electron microscopy of the immunoglobulins. Adv Immunol. 1969;11:1–30. doi: 10.1016/s0065-2776(08)60476-9. [DOI] [PubMed] [Google Scholar]
  12. Grossberg A. L., Markus G., Pressman D. Change in antibody conformation induced by hapten. Proc Natl Acad Sci U S A. 1965 Sep;54(3):942–945. doi: 10.1073/pnas.54.3.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HELMKAMP R. W., GOODLAND R. L., BALE W. F., SPAR I. L., MUTSCHLER L. E. High specific activity iodination of gamma-globulin with iodine-131 monochloride. Cancer Res. 1960 Nov;20:1495–1500. [PubMed] [Google Scholar]
  14. Henney C. S., Ishizaka K. Antigenic determinants specific for aggregated gamma G-globulins. J Immunol. 1968 Apr;100(4):718–725. [PubMed] [Google Scholar]
  15. Henney C. S., Stanworth D. R. Effect of antigen on the structural configuration of homologous antibody following antigen-antibody combination. Nature. 1966 Jun 4;210(5040):1071–1072. doi: 10.1038/2101071a0. [DOI] [PubMed] [Google Scholar]
  16. Huber H., Fudenberg H. H. Receptor sites of human monocytes for IgG. Int Arch Allergy Appl Immunol. 1968;34(1):18–31. doi: 10.1159/000230091. [DOI] [PubMed] [Google Scholar]
  17. Huber H., Fudenberg H. H. The interaction of monocytes and macrophages with immunoglobulins and complement. Ser Haematol. 1970;3(2):160–175. [PubMed] [Google Scholar]
  18. Huber H., Polley M. J., Linscott W. D., Fudenberg H. H., Müller-Eberhard H. J. Human monocytes: distinct receptor sites for the third component of complement and for immunoglobulin G. Science. 1968 Dec 13;162(3859):1281–1283. doi: 10.1126/science.162.3859.1281. [DOI] [PubMed] [Google Scholar]
  19. Hyslop N. E., Jr, Dourmashkin R. R., Green N. M., Porter R. R. The fixation of complement and the activated first component (C1) of complement by complexes formed between antibody and divalent hapten. J Exp Med. 1970 Apr 1;131(4):783–802. doi: 10.1084/jem.131.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ISHIZAKA K., CAMPBELL D. H. Biologic activity of soluble antigen-antibody complexes. V. Change of optical rotation by the formation of skin reactive complexes. J Immunol. 1959 Sep;83:318–326. [PubMed] [Google Scholar]
  21. ISHIZAKA K. Gamma globulin and molecular mechanisms in hypersensitivity reactions. Prog Allergy. 1963;7:32–106. [PubMed] [Google Scholar]
  22. ISHIZAKA K., ISHIZAKA T. Biologic activity of aggregated gamma-globulin. II. A study of various methods for aggregation and species differences. J Immunol. 1960 Aug;85:163–171. [PubMed] [Google Scholar]
  23. JAMES K., HENNEY C. S., STANWORTH D. R. STRUCTURAL CHANGES OCCURRING IN 7S GAMMA-GLOBULINS. Nature. 1964 May 9;202:563–566. doi: 10.1038/202563a0. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. LoBuglio A. F., Cotran R. S., Jandl J. H. Red cells coated with immunoglobulin G: binding and sphering by mononuclear cells in man. Science. 1967 Dec 22;158(3808):1582–1585. doi: 10.1126/science.158.3808.1582. [DOI] [PubMed] [Google Scholar]
  26. MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
  27. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  28. Mannik M., Arend M. P., Hall A. P., Gilliland B. C. Studies on antigen-antibody complexes. I. Elimination of soluble complexes from rabbit circulation. J Exp Med. 1971 Apr 1;133(4):713–739. doi: 10.1084/jem.133.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pearlman D. S., Ward P. A., Becker E. L. The requirement of serine esterase function in complement-dependent erythrophagocytosis. J Exp Med. 1969 Oct 1;130(4):745–764. doi: 10.1084/jem.130.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Phillips-Quagliata J. M., Levine B. B., Quagliata F., Uhr J. W. Mechanisms underlying binding of immune complexes to macrophages. J Exp Med. 1971 Mar 1;133(3):589–601. doi: 10.1084/jem.133.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stanworth D. R., Henney C. S. Some biological activities associated with the 10S form of human gamma-G-globulin. Immunology. 1967 Mar;12(3):267–274. [PMC free article] [PubMed] [Google Scholar]
  32. Thrasher S. G., Cohen S. Studies of the mechanism of binding of chemically modified cytophilic antibodies to macrophages. J Immunol. 1971 Sep;107(3):672–677. [PubMed] [Google Scholar]
  33. WASSERMAN E., LEVINE L. Quantitative micro-complement fixation and its use in the study of antigenic structure by specific antigen-antibody inhibition. J Immunol. 1961 Sep;87:290–295. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES