Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Oct 1;136(4):737–760. doi: 10.1084/jem.136.4.737

CELL INTERACTIONS IN THE IMMUNE RESPONSE IN VITRO

V. SPECIFIC COLLABORATION VIA COMPLEXES OF ANTIGEN AND THYMUS-DERIVED CELL IMMUNOGLOBULIN

Marc Feldmann 1
PMCID: PMC2139270  PMID: 4115708

Abstract

The mechanism of interaction of T and B lymphocytes was investigated in an in vitro hapten carrier system using culture chambers with two compartments separated by a cell impermeable nucleopore membrane. Because specific cell interaction occurred efficiently across this membrane, contact of T and B lymphocytes was not essential for cooperation which must have been mediated by a subcellular component or "factor." By using different lymphoid cell populations in the lower culture chamber and activated thymus cells in the upper chamber (with antigen present in both), it was found that the antigen-specific mediator acted indirectly on B cells, through the agency of macrophages. Macrophages which had been cultured in the presence of activated T cells and antigen acquired the capacity to specifically induce antibody responses in B cell-containing lymphoid populations. Trypsinization of these macrophages inhibited their capacity to induce immune responses, indicating that the mediator of cell cooperation is membrane bound. By using antisera to both the haptenic and carrier determinants of the antigen as blocking reagents, it was demonstrated that the whole antigen molecule was present on the surface of macrophages which had been exposed to activated T cells and antigen. Because specifically activated T cells were essential a component of the antigen-specific mediator must be derived from these cells. By using anti-immunoglobulin sera as inhibitors of the binding of the mediator to macrophages, the T cell component was indeed found to contain both κ- and µ-chains and was thus presumably a T cell-derived immunoglobulin. It was proposed that cell cooperation is mediated by complexes of T cell IgM and antigen, bound to the surface of macrophage-like cells, forming a lattice of appropriately spaced antigenic determinants. B cells become immunized by interacting with this surface. With this mechanism of cell cooperation, the actual pattern of antigen-B cell receptor interactions in immunization would be the same with both thymus-dependent and independent antigens. An essential feature of the proposed mechanism of cell cooperation is that macrophage-B cell interaction must occur at an early stage of the antibody response, a concept which is supported by many lines of evidence. Furthermore this mechanism of cell interaction can be elaborated to explain certain phenomena such as the highly immunogenic macrophage-bound antigen, antigenic competition, the distinction between immunity and tolerance in B lymphocytes, and the possible mediation of tolerance by T lymphocytes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretscher P., Cohn M. A theory of self-nonself discrimination. Science. 1970 Sep 11;169(3950):1042–1049. doi: 10.1126/science.169.3950.1042. [DOI] [PubMed] [Google Scholar]
  2. Cheers C., Breitner J. C., Little M., Miller J. F. Cooperation between carrier-reactive and hapten-sensitive cells in vitro. Nat New Biol. 1971 Aug 25;232(34):248–250. doi: 10.1038/newbio232248a0. [DOI] [PubMed] [Google Scholar]
  3. Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
  4. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  5. Davies A. J. The thymus and the cellular basis of immunity. Transplant Rev. 1969;1:43–91. doi: 10.1111/j.1600-065x.1969.tb00136.x. [DOI] [PubMed] [Google Scholar]
  6. Diener E., Feldmann M. Relationship between antigen and antibody-induced suppression of immunity. Transplant Rev. 1972;8:76–103. doi: 10.1111/j.1600-065x.1972.tb01565.x. [DOI] [PubMed] [Google Scholar]
  7. Diener E., Shortman K., Russell P. Induction of immunity and tolerance in vitro in the absence of phagocytic cells. Nature. 1970 Feb 21;225(5234):731–732. doi: 10.1038/225731a0. [DOI] [PubMed] [Google Scholar]
  8. Feldmann M., Basten A. Cell interactions in the immune response in vitro. 3. Specific collaboration across a cell impermeable membrane. J Exp Med. 1972 Jul 1;136(1):49–67. doi: 10.1084/jem.136.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feldmann M., Basten A. Cell interactions in the immune response in vitro. IV. Comparison of the effects of antigen-specific and allogeneic thymus-derived cell factors. J Exp Med. 1972 Oct 1;136(4):722–736. doi: 10.1084/jem.136.4.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feldmann M. Cell interactions in the immune response in vitro. II. The requirement for macrophages in lymphoid cell collaboration. J Exp Med. 1972 May 1;135(5):1049–1058. doi: 10.1084/jem.135.5.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldmann M., Diener E. Antibody-mediated suppression of the immune response in vitro. I. Evidence for a central effect. J Exp Med. 1970 Feb;131(2):247–274. doi: 10.1084/jem.131.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feldmann M. Induction of immunity and tolerance in vitro by hapten protein conjugates. 3. Hapten inhibition studies of antigen binding to B cells in immunity and tolerance. J Exp Med. 1972 Sep 1;136(3):532–545. doi: 10.1084/jem.136.3.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feldmann M. Induction of immunity and tolerance in vitro by hapten protein conjugates. I. The relationship between the degree of hapten conjugation and the immunogenicity of dinitrophenylated polymerized flagellin. J Exp Med. 1972 Apr 1;135(4):735–753. doi: 10.1084/jem.135.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feldmann M. Induction of immunity and tolerance in vitro by hapten protein conjugates. II. Carrier independence of the response to dinitrophenylated polymerized flagellin. Eur J Immunol. 1972 Apr;2(2):130–137. doi: 10.1002/eji.1830020208. [DOI] [PubMed] [Google Scholar]
  15. Gershon R. K., Kondo K. Antigenic competition between heterologous erythrocytes. I. Thymic dependency. J Immunol. 1971 Jun;106(6):1524–1531. [PubMed] [Google Scholar]
  16. Gershon R. K., Kondo K. Infectious immunological tolerance. Immunology. 1971 Dec;21(6):903–914. [PMC free article] [PubMed] [Google Scholar]
  17. Gorczynski R. M., Miller R. G., Phillips R. A. Initiation of antibody production to sheep erythrocytes in vitro: replacement of the requirement for T-cells with a cell-free factor isolated from cultures of lymphoid cells. J Immunol. 1972 Feb;108(2):547–551. [PubMed] [Google Scholar]
  18. Haimovich J., Tarrab R., Sulica A., Sela M. Antibdies of different specificities in normal rabbit sera. J Immunol. 1970 Apr;104(4):1033–1034. [PubMed] [Google Scholar]
  19. Kerbel R. S., Eidinger D. Further studies of antigenic competition. 3. A model to account for the phenomenon based on a deficiency of cell-to-cell interaction in immune lymphoid cell populations. J Exp Med. 1971 May 1;133(5):1043–1060. doi: 10.1084/jem.133.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lachmann P. J. Lymphocyte cooperation. Proc R Soc Lond B Biol Sci. 1971 Jan 12;176(1045):425–426. doi: 10.1098/rspb.1971.0005. [DOI] [PubMed] [Google Scholar]
  21. Lighting up human genetics. Nat New Biol. 1971 Feb 24;229(8):225–225. doi: 10.1038/newbio229225a0. [DOI] [PubMed] [Google Scholar]
  22. Miller H. R., Avrameas S. Association between macrophages and specific antibody producing cells. Nat New Biol. 1971 Feb 10;229(6):184–185. doi: 10.1038/newbio229184a0. [DOI] [PubMed] [Google Scholar]
  23. Miller J. F., Basten A., Sprent J., Cheers C. Interaction between lymphocytes in immune responses. Cell Immunol. 1971 Oct;2(5):469–495. doi: 10.1016/0008-8749(71)90057-8. [DOI] [PubMed] [Google Scholar]
  24. Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
  25. Mitchell J. Antigens in immunity. XVII. The migration of antigen-binding, bone-marrow-derived and thymus-derived spleen cells in mice. Immunology. 1972 Feb;22(2):231–245. [PMC free article] [PubMed] [Google Scholar]
  26. Mitchison N. A. The carrier effect in the secondary response to hapten-protein conjugates. I. Measurement of the effect with transferred cells and objections to the local environment hypothesis. Eur J Immunol. 1971 Jan;1(1):10–17. doi: 10.1002/eji.1830010103. [DOI] [PubMed] [Google Scholar]
  27. Mitchison N. A. The immunogenic capacity of antigen taken up by peritoneal exudate cells. Immunology. 1969 Jan;16(1):1–14. [PMC free article] [PubMed] [Google Scholar]
  28. Mosier D. E. Cell interactions in the primary immune response in vitro: a requirement for specific cell clusters. J Exp Med. 1969 Feb 1;129(2):351–362. doi: 10.1084/jem.129.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pierce C. W., Benacerraf B. Immune response in vitro: independence of "activated" lymphoid cells. Science. 1969 Nov 21;166(3908):1002–1004. doi: 10.1126/science.166.3908.1002. [DOI] [PubMed] [Google Scholar]
  30. Raff M. C., Wortis H. H. Thymus dependence of theta-bearing cells in the peripheral lymphoid tissues of mice. Immunology. 1970 Jun;18(6):931–942. [PMC free article] [PubMed] [Google Scholar]
  31. Rajewsky K., Schirrmacher V., Nase S., Jerne N. K. The requirement of more than one antigenic determinant for immunogenicity. J Exp Med. 1969 Jun 1;129(6):1131–1143. doi: 10.1084/jem.129.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schimpl A., Wecker E. Replacement of T-cell function by a T-cell product. Nat New Biol. 1972 May 3;237(70):15–17. doi: 10.1038/newbio237015a0. [DOI] [PubMed] [Google Scholar]
  33. Schmidtke J., Unanue E. R. Interaction of macrophages and lymphocytes with surface immunoglobulin. Nat New Biol. 1971 Sep 15;233(37):84–86. doi: 10.1038/newbio233084a0. [DOI] [PubMed] [Google Scholar]
  34. Shortman K., Williams N., Jackson H., Russell P., Byrt P., Diener E. The separation of different cell classes from lymphoid organs. IV. The separation of lymphocytes from phagocytes on glass bead columns, and its effect on subpopulations of lymphocytes and antibody-forming cells. J Cell Biol. 1971 Mar;48(3):566–579. doi: 10.1083/jcb.48.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sjöberg O. Antigenic competition in vitro of spleen cells subjected to a graft-versus-host reaction. Immunology. 1971 Aug;21(2):351–361. [PMC free article] [PubMed] [Google Scholar]
  36. Sprent J., Miller J. F. Activation of thymus cells by histocompatibility antigens. Nat New Biol. 1971 Sep 15;234(50):195–198. doi: 10.1038/newbio234195a0. [DOI] [PubMed] [Google Scholar]
  37. Taussig M. J., Lachmann P. J. Studies on antigenic competition. II. Abolition of antigenic competition by antibody against or tolerance to the dominant antigen: a model for antigenic competition. Immunology. 1972 Feb;22(2):185–197. [PMC free article] [PubMed] [Google Scholar]
  38. Unanue E. R., Askonas B. A. Persistence of immunogenicity of antigen after uptake by macrophages. J Exp Med. 1968 May 1;127(5):915–926. doi: 10.1084/jem.127.5.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Unanue E. R., Cerottini J. C. The immunogenicity of antigen bound to the plasma membrane of macrophages. J Exp Med. 1970 Apr 1;131(4):711–725. doi: 10.1084/jem.131.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES