Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Oct 31;136(5):984–1007. doi: 10.1084/jem.136.5.984

MOUSE THYMUS-INDEPENDENT AND THYMUS-DERIVED LYMPHOID CELLS

I. IMMUNOFLUORESCENT AND FUNCTIONAL STUDIES

J-P Lamelin 1, B Lisowska-Bernstein 1, A Matter 1, J E Ryser 1, P Vassalli 1
PMCID: PMC2139302  PMID: 4117194

Abstract

The simultaneous use on mouse lymphoid suspensions of heterologous antisera directed against thymus-derived (T) cell mouse-specific lymphocyte antigen and brain-associated theta antigen (MSLA and BAθ) or thymus-independent (B) cell mouse-specific bone marrow-derived lymphocyte antigen (MBLA) surface antigens allowed direct proof of the different specificity of these antisera by double immunofluorescence (IF) staining with selective visualization of fluorochromes. These antisera and antisera against mouse Ig and its different types of chains were then used with technique of either double IF staining or IF combined with radioautography, allowing the following conclusions: (a) Surface Ig (sIg) was found exclusively on B cells and never on T cells, but not all B cells had sIg. Cells containing detectable amounts of Ig were MBLA+, but had less sIg than other B cells or none at all. There was evidence for the existence of a significant number of MBLA+ lymphocytes, neither bearing nor containing detectable Ig. (b) µ-Chains were the most frequent but not the only heavy chains found on spleen cells; however, it could not be decided with the technique used, if a single cell can bear more than one type of heavy chain. No cell containing γ-chains was found to bear surface µ-chains, although a very few cells containing both µ- and γ-chains were observed. (c) The antigen-binding cells detected after immunization with bacteriophage T4, bovine serum albumin, Maia squinado hemocyanin, and sheep erythrocytes were analyzed for MSLA, MBLA or sIg using double IF, a combination of IF and radioautography, or inhibition of "rosette" formation. Practically all the antigen-binding cells detected were MSLA-, MBLA+, sIg+. (d) More B cells than T cells were found among short-lived lymphoid cells labeled by repeated in vivo injections of tritiated thymidine, but the results did not support a simplified concept equating T cells to long-lived and B cells to short-lived lymphocytes. (e) Cells dividing rapidly in the lymph nodes draining the sites of immunization with various antigens were predominantly T cells 2 days after immunization and in majority B cells a few days later. (f) Incubation of lymphoid cells at 37°C with rabbit anti-mouse Ig or anti-κ chains led to complete disappearance of sIg and to decrease of MBLA ("antigenic modulation"). In the same conditions, anti-MBLA gave partial modulation of MBLA and of sIg; MBLA, however, reappeared much faster than sIg. No modulation of T cell surface antigens by the appropriate antisera was observed. Cell treatment with Pronase could remove MBLA, sIg, MSLA, and BAθ, which reappeared within a few hours. Neuraminidase treatment was without detectable effect on these antigens.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  2. BOYSE E. A., OLD L. J., CHOUROULINKOV I. CYTOTOXIC TEST FOR DEMONSTRATION OF MOUSE ANTIBODY. Methods Med Res. 1964;10:39–47. [PubMed] [Google Scholar]
  3. Baird S., Santa J., Weissman I. Anti-theta antisera may contain anti-allotype contamination. Nat New Biol. 1971 Jul 14;232(28):56–56. doi: 10.1038/newbio232056a0. [DOI] [PubMed] [Google Scholar]
  4. Bankhurst A. D., Warner N. L. Surface immunoglobulins on mouse lymphoid cells. J Immunol. 1971 Aug;107(2):368–373. [PubMed] [Google Scholar]
  5. Basten A., Miller J. F., Warner N. L., Pye J. Specific inactivation of thymus-derived (T) and non-thymus-derived (B) lymphocytes by 125I-labelled antigen. Nat New Biol. 1971 May 26;231(21):104–106. doi: 10.1038/newbio231104a0. [DOI] [PubMed] [Google Scholar]
  6. Byrt P., Ada G. L. An in vitro reaction between labelled flagellin or haemocyanin and lymphocyte-like cells from normal animals. Immunology. 1969 Oct;17(4):503–516. [PMC free article] [PubMed] [Google Scholar]
  7. Cebra J. J., Goldstein G. Chromatographic purification of tetramethylrhodamine-immune globulin conjugates and their use in the cellular localization of rabbit gamma-globulin polypeptide chains. J Immunol. 1965 Aug;95(2):230–245. [PubMed] [Google Scholar]
  8. Cerottini J. C., Nordin A. A., Brunner K. T. Specific in vitro cytotoxicity of thymus-derived lymphocytes sensitized to alloantigens. Nature. 1970 Dec 26;228(5278):1308–1309. doi: 10.1038/2281308a0. [DOI] [PubMed] [Google Scholar]
  9. Cohen A., Schlesinger M. Absorption of guinea pig serum with agar. A method for elimination of itscytotoxicity for murine thymus cells. Transplantation. 1970 Jul;10(1):130–132. doi: 10.1097/00007890-197007000-00027. [DOI] [PubMed] [Google Scholar]
  10. Cosenza H., Nordin A. A. Immunoglobulin classes of antibody-forming cells in mice. 3. Immunoglobulin antibody restriction of plaque-forming cells demonstrated by the double immunofluorescent technique. J Immunol. 1970 Apr;104(4):976–983. [PubMed] [Google Scholar]
  11. Davie J. M., Paul W. E. Receptors on immunocompetent cells. II. Specificity and nature of receptors on dinitrophenylated guinea pig albumin- 125 I-binding lymphocytes of normal guinea pigs. J Exp Med. 1971 Aug 1;134(2):495–516. doi: 10.1084/jem.134.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davie J. M., Rosenthal A. S., Paul W. E. Receptors on immunocompetent cells. 3. Specificity and nature of receptors on dinitrophenylated guinea pig albumin- 125 I-binding cells of immunized guinea pigs. J Exp Med. 1971 Aug 1;134(2):517–531. doi: 10.1084/jem.134.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davies A. J., Carter R. L., Leuchars E., Wallis V., Koller P. C. The morphology of immune reactions in normal, thymectomized and reconstituted mice. I. The response to sheep erythrocytes. Immunology. 1969 Jan;16(1):57–69. [PMC free article] [PubMed] [Google Scholar]
  14. Dickson R. C., Barnes S. L., Eiserling F. A. Structural proteins of bacteriophage T4. J Mol Biol. 1970 Nov 14;53(3):461–474. doi: 10.1016/0022-2836(70)90077-x. [DOI] [PubMed] [Google Scholar]
  15. Dwyer J. M., Mason S., Warner N. L., Mackay I. R. Antigen binding lymphocytes in congenitally athymic (nude) mice. Nat New Biol. 1971 Dec 22;234(51):252–253. doi: 10.1038/newbio234252a0. [DOI] [PubMed] [Google Scholar]
  16. EVERETT N. B., CAFFREY R. W., RIEKE W. O. RECIRCULATION OF LYMPHOCYTES. Ann N Y Acad Sci. 1964 Feb 28;113:887–897. doi: 10.1111/j.1749-6632.1964.tb40710.x. [DOI] [PubMed] [Google Scholar]
  17. FLEISCHMAN J. B., PAIN R. H., PORTER R. R. Reduction of gamma-globulins. Arch Biochem Biophys. 1962 Sep;Suppl 1:174–180. [PubMed] [Google Scholar]
  18. Golub E. S. Brain-associated theta antigen: reactivity of rabbit anti-mouse brain with mouse lymphoid cells. Cell Immunol. 1971 Aug;2(4):353–361. doi: 10.1016/0008-8749(71)90070-0. [DOI] [PubMed] [Google Scholar]
  19. Greaves M. F., Möller E. Studies on antigen-binding cells. I. The origin of reactive cells. Cell Immunol. 1970 Oct;1(4):372–385. doi: 10.1016/0008-8749(70)90015-8. [DOI] [PubMed] [Google Scholar]
  20. Greaves M. F. The expression of immunoglobulin determinants on the surface of antigen-binding lymphoid cells in mice. I. An analysis of light and heavy chain restrictions on individual cells. Eur J Immunol. 1971 Jun;1(3):186–194. doi: 10.1002/eji.1830010308. [DOI] [PubMed] [Google Scholar]
  21. Hunter P., Munro A., McConnell I. Properties of educated T cells for rosette formation and cooperation with B cells. Nat New Biol. 1972 Mar 15;236(63):52–53. doi: 10.1038/newbio236052a0. [DOI] [PubMed] [Google Scholar]
  22. Jones G., Torrigiani G., Roitt I. M. Immunoglobulin determinants on mouse lymphocytes. J Immunol. 1971 Jun;106(6):1425–1430. [PubMed] [Google Scholar]
  23. Kincade P. W., Lawton A. R., Cooper M. D. Restriction of surface immunoglobulin determinants to lymphocytes of the plasma cell line. J Immunol. 1971 May;106(5):1421–1423. [PubMed] [Google Scholar]
  24. Matter A., Lisowska-Bernstein B., Ryser J. E., Lamelin J. P., Vassalli P. Mouse thymus-independent and thymus-derived lymphoid cells. II. Ultrastructural studies. J Exp Med. 1972 Nov 1;136(5):1008–1030. doi: 10.1084/jem.136.5.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  26. McConnell I. Antigen receptors on the surface of antibody-secreting cells. Nat New Biol. 1971 Oct 6;233(40):177–179. doi: 10.1038/newbio233177a0. [DOI] [PubMed] [Google Scholar]
  27. Möller G., Michael G. Frequency of antigen-sensitive cells to thymus-independent antigens. Cell Immunol. 1971 Aug;2(4):309–316. doi: 10.1016/0008-8749(71)90065-7. [DOI] [PubMed] [Google Scholar]
  28. Naor D., Sulitzneau D. Binding of radioiodinated bovine serum albumin to mouse spleen cells. Nature. 1967 May 13;214(5089):687–688. doi: 10.1038/214687a0. [DOI] [PubMed] [Google Scholar]
  29. Niederhuber J. E. An improved method for preparing anti-B lymphocyte serum. Nat New Biol. 1971 Sep 15;233(37):86–87. doi: 10.1038/newbio233086a0. [DOI] [PubMed] [Google Scholar]
  30. Parkhouse R. M., Askonas B. A. Immunoglobulin M biosynthesis. Intracellular accumulation of 7S subunits. Biochem J. 1969 Nov;115(2):163–169. doi: 10.1042/bj1150163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pernis B., Forni L., Amante L. Immunoglobulin spots on the surface of rabbit lymphocytes. J Exp Med. 1970 Nov;132(5):1001–1018. doi: 10.1084/jem.132.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perper R. J., Zee T. W., Mickelson M. M. Purification of lymphocytes and platelets by gradient centrifugation. J Lab Clin Med. 1968 Nov;72(5):842–848. [PubMed] [Google Scholar]
  33. Raff M. C., Sternberg M., Taylor R. B. Immunoglobulin determinants on the surface of mouse lymphoid cells. Nature. 1970 Feb 7;225(5232):553–554. doi: 10.1038/225553a0. [DOI] [PubMed] [Google Scholar]
  34. Raff M. C. Surface antigenic markers for distinguishing T and B lymphocytes in mice. Transplant Rev. 1971;6:52–80. doi: 10.1111/j.1600-065x.1971.tb00459.x. [DOI] [PubMed] [Google Scholar]
  35. Roberts C. I., Brandriss M. W., Vaughan J. H. Failure of immunocytoadherence to demonstrate delayed hypersensitivity. J Immunol. 1971 Apr;106(4):1056–1064. [PubMed] [Google Scholar]
  36. Roelants G. E., Askonas B. A. Cell cooperation in antibody induction. The susceptibility of helper cells to specific lethal radioactive antigen. Eur J Immunol. 1971 Jun;1(3):151–157. doi: 10.1002/eji.1830010302. [DOI] [PubMed] [Google Scholar]
  37. Schlesinger M., Amos B. D. Effect of neuraminidase on serological properties of murine lymphoid cells. Transplant Proc. 1971 Mar;3(1):895–897. [PubMed] [Google Scholar]
  38. Shigeno N., Hämmerling U., Arpels C., Boyse E. A., Old L. J. Preparation of lymphocyte-specific antibody from anti-lymphocyte serum. Lancet. 1968 Aug 10;2(7563):320–323. doi: 10.1016/s0140-6736(68)90530-8. [DOI] [PubMed] [Google Scholar]
  39. Simmons R. L., Rios A., Ray P. K. Immunogenicity and antigenicity of lymphoid cells treated with neuraminidase. Nat New Biol. 1971 Jun 9;231(23):179–181. doi: 10.1038/newbio231179a0. [DOI] [PubMed] [Google Scholar]
  40. Takahashi T., Old L. J., McIntire K. R., Boyse E. A. Immunoglobulin and other surface antigens of cells of the immune system. J Exp Med. 1971 Oct 1;134(4):815–832. doi: 10.1084/jem.134.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taylor R. B. Cellular cooperation in the antibody response of mice to two serum albumins: specific function of thymus cells. Transplant Rev. 1969;1:114–149. doi: 10.1111/j.1600-065x.1969.tb00138.x. [DOI] [PubMed] [Google Scholar]
  42. Taylor R. B., Iverson G. M. Hapten competition and the nature of cell-cooperation in the antibody response. Proc R Soc Lond B Biol Sci. 1971 Jan 12;176(1045):393–418. doi: 10.1098/rspb.1971.0003. [DOI] [PubMed] [Google Scholar]
  43. Unanue E. R., Grey H. M., Rabellino E., Campbell P., Schmidtke J. Immunoglobulins on the surface of lymphocytes. II. The bone marrow as the main source of lymphocytes with detectable surface-bound immunoglobulin. J Exp Med. 1971 Jun 1;133(6):1188–1198. doi: 10.1084/jem.133.6.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. WIGZELL H. QUANTITATIVE TITRATIONS OF MOUSE H-2 ANTIBODIES USING CR-51-LABELLED TARGET CELLS. Transplantation. 1965 May;3:423–431. doi: 10.1097/00007890-196505000-00011. [DOI] [PubMed] [Google Scholar]
  45. Warner N. L., Byrt P., Ada G. L. Blocking of the lymphocyte antigen receptor site with anti-immunoglobulin sera in vitro. Nature. 1970 Jun 6;226(5249):942–943. doi: 10.1038/226942a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES