Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Oct 31;136(5):1117–1139. doi: 10.1084/jem.136.5.1117

LYSOSOMES OF THE ARTERIAL WALL

I. ISOLATION AND SUBCELLULAR FRACTIONATION OF CELLS FROM NORMAL RABBIT AORTA

T J Peters 1, M Müller 1, Amo C de Duve 1
PMCID: PMC2139304  PMID: 4343242

Abstract

Smooth muscle cells were dissociated from normal rabbit aorta by incubating the tissue in Hanks' solution containing elastase, collagenase, and hyaluronidase. The isolated cells contained significant amounts of the following acid hydrolases: N-acetyl-β-glucosaminidase, N-acetyl-β-galactosaminidase, β-galactosidase, β-glucuronidase, α-mannosidase, β-glucosidase, acid phosphatase, and cathepsins C and D. The cells were disrupted and fractionated by isopycnic centrifugation on sucrose density gradients in the Beaufay automatic zonal rotor. Lysosomes with a modal density of 1.16 were identified by the distribution of these acid hydrolases and by the latency of N-acetyl-β-glucosaminidase and β-galactosidase. Other particulate enzymes studied in these sucrose gradients included cytochrome oxidase and monoamine oxidase (mitochondria), 5'-nucleotidase and leucyl-β-naphthylamidase (plasma membrane), and catalase (? peroxisome). This microanalytical subcellular fractionation technique is applicable to the study of milligram quantities of many other tissues, both normal and pathological.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auricchio S., Pierro M., Orsatti M. Assay of peptidase activities of intestinal brush border membrane with L-amino acid oxidase. Anal Biochem. 1971 Jan;39(1):15–23. doi: 10.1016/0003-2697(71)90456-8. [DOI] [PubMed] [Google Scholar]
  2. Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
  3. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CONGIU L., BACCINO F. M. ULTRASTRUTTURA DELL'AORTA NORMALE E ATEROSCLEROTICA. Arch De Vecchi Anat Patol. 1964 Jul;43:345–404. [PubMed] [Google Scholar]
  6. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  7. Day A. J., Tume R. K. In vitro incorporation of 14C-labelled oleic acid into combined lipid by foam cells from rabbit atheromatous lesions. J Atheroscler Res. 1969 Mar-Apr;9(2):141–149. doi: 10.1016/s0368-1319(69)80049-9. [DOI] [PubMed] [Google Scholar]
  8. Day A. J., Wilkinson G. K. Incorporation of 14-C-labeled acetate into lipid by isolated foam cells and by atherosclerotic arterial intima. Circ Res. 1967 Nov;21(5):593–600. doi: 10.1161/01.res.21.5.593. [DOI] [PubMed] [Google Scholar]
  9. Deter R. L., De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967 May;33(2):437–449. doi: 10.1083/jcb.33.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GEER J. C., McGILL H. C., Jr, STRONG J. P. The fine structure of human atherosclerotic lesions. Am J Pathol. 1961 Mar;38:263–287. [PMC free article] [PubMed] [Google Scholar]
  11. Guilbault G. G., Brignac P., Jr, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analytical applications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal Chem. 1968 Jan;40(1):190–196. doi: 10.1021/ac60257a002. [DOI] [PubMed] [Google Scholar]
  12. HIRAOKA T., GLICK D. Studies in histochemistry. LXXI. Measurement of protein in millimicrogram amounts by quenching of dye fluorescence. Anal Biochem. 1963 Jun;5:497–504. doi: 10.1016/0003-2697(63)90069-1. [DOI] [PubMed] [Google Scholar]
  13. Hollander W. Recent advances in experimental and molecular pathology; influx, synthesis, and transport of arterial lipoproteins in atherosclerosis. Exp Mol Pathol. 1967 Oct;7(2):248–258. doi: 10.1016/0014-4800(67)90033-0. [DOI] [PubMed] [Google Scholar]
  14. Howard C. F., Jr, Portman O. W. Hydrolysis of cholesteryl linoleate by a high-speed supernatant preparation of rat and monkey aorta. Biochim Biophys Acta. 1966 Dec 7;125(3):623–626. doi: 10.1016/0005-2760(66)90056-7. [DOI] [PubMed] [Google Scholar]
  15. Jacks T. J., Kircher H. W. Fluorometric assay for the hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal Biochem. 1967 Nov;21(2):279–285. doi: 10.1016/0003-2697(67)90190-x. [DOI] [PubMed] [Google Scholar]
  16. KARRER H. E. An electron microscope study of the aorta in young and in aging mice. J Ultrastruct Res. 1961 Mar;5:1–27. doi: 10.1016/s0022-5320(61)80002-6. [DOI] [PubMed] [Google Scholar]
  17. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  18. KOBERNICK S. D., HASHIMOTO Y. Histochemistry of atherosclerosis. I. Induced lesionof the aorta of cholesterolfed, exercised, and sedentary rabbits. Lab Invest. 1963 Jun;12:638–647. [PubMed] [Google Scholar]
  19. LEJEUNE N., THINES-SEMPOUX D., HERS H. G. Tissue fractionation studies. 16. Intracellular distribution and properties of alpha-glucosidases in rat liver. Biochem J. 1963 Jan;86:16–21. doi: 10.1042/bj0860016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lazarow P. B., De Duve C. Intermediates in the biosynthesis of peroxisomal catalase in rat liver. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1198–1204. doi: 10.1016/0006-291x(71)90145-8. [DOI] [PubMed] [Google Scholar]
  21. Le Pecq J. B., Paoletti C. A new fluorometric method for RNA and DNA determination. Anal Biochem. 1966 Oct;17(1):100–107. doi: 10.1016/0003-2697(66)90012-1. [DOI] [PubMed] [Google Scholar]
  22. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MEAD J. A., SMITH J. N., WILLIAMS R. T. Studies in detoxication. 67. The biosynthesis of the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric determination of beta-glucuronidase. Biochem J. 1955 Dec;61(4):569–574. doi: 10.1042/bj0610569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MOORE D. H., RUSKA H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol. 1957 May 25;3(3):457–462. doi: 10.1083/jcb.3.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marsh C. A., Gourlay G. C. Evidence for a non-lysosomal alpha-mannosidase in rat liver homogenates. Biochim Biophys Acta. 1971 Apr 14;235(1):142–148. doi: 10.1016/0005-2744(71)90041-6. [DOI] [PubMed] [Google Scholar]
  26. Marshall J. R., Adams J. G., O'Neal R. M., De Bakey M. E. The ultrastructure of uncomplicated human atheroma in surgically resected aortas. J Atheroscler Res. 1966 Mar-Apr;6(2):120–131. doi: 10.1016/s0368-1319(66)80017-0. [DOI] [PubMed] [Google Scholar]
  27. Meerov G. I., Ryzhkova Y. P. Radiometric method for determination of glucose 6-phosphatase activity in liver. Anal Biochem. 1969 Mar;27(3):419–423. doi: 10.1016/0003-2697(69)90055-4. [DOI] [PubMed] [Google Scholar]
  28. Moss N. S., Benditt E. P. Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta. Lab Invest. 1970 Feb;22(2):166–183. [PubMed] [Google Scholar]
  29. Newman H. A., Murad T. M., Geer J. C. Foam cells of rabbit atheromatous lesion. Identification and cholesterol uptake in isolated cells. Lab Invest. 1971 Dec;25(6):586–595. [PubMed] [Google Scholar]
  30. PEASE D. C., MOLINARI S. Electron microscopy of muscular arteries; pial vessels of43 the cat and monkey. J Ultrastruct Res. 1960 Jun;3:447–468. doi: 10.1016/s0022-5320(60)90022-8. [DOI] [PubMed] [Google Scholar]
  31. PEASE D. C., PAULE W. J. Electron microscopy of elastic arteries; the thoracic aorta of the rat. J Ultrastruct Res. 1960 Jun;3:469–483. doi: 10.1016/s0022-5320(60)90023-x. [DOI] [PubMed] [Google Scholar]
  32. Panveliwalla D. K., Moss D. W. A comparison of aminoacyl-beta-naphthylamide hydrolases in extracts of human tissues. Biochem J. 1966 May;99(2):501–506. doi: 10.1042/bj0990501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parker F., Odland G. F. A correlative histochemical, biochemical and electron microscopic study of experimental atherosclerosis in the rabbit aorta with special reference to the myo-intimal cell. Am J Pathol. 1966 Feb;48(2):197–239. [PMC free article] [PubMed] [Google Scholar]
  34. Portman O. W. Incorporation of fatty acids into phospholipids by cell-free and subcellular fractions of squirrel monkey and rat aorta. Importance of endogenous lysophosphatidylcholine. J Atheroscler Res. 1967 Sep-Oct;7(5):617–628. doi: 10.1016/s0368-1319(67)80039-5. [DOI] [PubMed] [Google Scholar]
  35. REIS J. L. The specificity of phospho-monoesterases in human tissues. Biochem J. 1951 May;48(5):548–551. doi: 10.1042/bj0480548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  37. Richard M., Broquet P., Louisot P. Activité des glycosyl-transférases microsomiques de l'intima des parois aortiques. C R Acad Sci Hebd Seances Acad Sci D. 1972 Feb 21;274(8):1212–1214. [PubMed] [Google Scholar]
  38. Robertson A. B., Jr, Insull W., Jr Dissection of normal and athersclerotic human artery with proteolytic enzymes in vitro. Nature. 1967 May 20;214(5090):821–823. doi: 10.1038/214821a0. [DOI] [PubMed] [Google Scholar]
  39. Roth J. S., Losty T., Wierbicki E. Assay of proteolytic enzyme activity using a 14C-labeled hemoglobin. Anal Biochem. 1971 Jul;42(1):214–221. doi: 10.1016/0003-2697(71)90029-7. [DOI] [PubMed] [Google Scholar]
  40. Scott R. F., Jones R., Daoud A. S., Zumbo O., Coulston F., Thomas W. A. Experimental atherosclerosis in rhesus monkeys. II. Cellular elements of proliferative lesions and possible role of cytoplasmic degeneration in pathogenesis as studied by electron microscopy. Exp Mol Pathol. 1967 Aug;7(1):34–57. doi: 10.1016/0014-4800(67)90037-8. [DOI] [PubMed] [Google Scholar]
  41. Simard-Duquesne N. Oxidative phosphorylation in mitochondrial fractions isolated from rat aortae. J Atheroscler Res. 1969 Jul-Aug;10(1):97–101. doi: 10.1016/s0368-1319(69)80087-6. [DOI] [PubMed] [Google Scholar]
  42. Stein O., Rachmilewitz D., Eisenberg S., Stein Y. Aortic phospholipids. A biochemical, radioautographic and morphological study of phospholipid localization in normal adult aorta. Isr J Med Sci. 1970 Jan-Feb;6(1):53–66. [PubMed] [Google Scholar]
  43. Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vanha-Perttula T., Hopsu V. K., Sonninen V., Glenner G. G. Cathepsin C activity as related to some histochemical substrates. Histochemie. 1965 Jul 27;5(2):170–181. doi: 10.1007/BF00285511. [DOI] [PubMed] [Google Scholar]
  45. Verity M. A., Bevan J. A. Membrane adenosine triphosphatase activity of vascular smooth muscle. Biochem Pharmacol. 1969 Feb;18(2):327–338. doi: 10.1016/0006-2952(69)90210-x. [DOI] [PubMed] [Google Scholar]
  46. Verity M. A., Su C., Bevan J. A. Transmural and subcellular localization of monoamine oxidase and catechol-0-methyl transferase in rabbit aorta. Biochem Pharmacol. 1972 Jan 15;21(2):193–201. doi: 10.1016/0006-2952(72)90269-9. [DOI] [PubMed] [Google Scholar]
  47. WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES