Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1972 Nov 30;136(6):1404–1429. doi: 10.1084/jem.136.6.1404

IMMUNOLOGICAL TOLERANCE IN BONE MARROW-DERIVED LYMPHOCYTES

I. EVIDENCE FOR AN INTRACELLULAR MECHANISM OF INACTIVATION OF HAPTEN-SPECIFIC PRECURSORS OF ANTIBODY-FORMING CELLS

David H Katz 1, Toshiyuki Hamaoka 1, Baruj Benacerraf 1
PMCID: PMC2139327  PMID: 4539311

Abstract

Administration of the 2,4-dinitrophenyl (DNP) derivative of the copolymer of D-glutamic acid and D-lysine (D-GL) to inbred mice induces a state of DNP-specific tolerance in such animals irrespective of their immune status at the time of treatment. Taking advantage of the relative ease with which DNP-D-GL can induce tolerance in an animal previously primed with an immunogenic DNP-carrier conjugate, we have established conditions for tolerance induction in an adoptive cell transfer system. Thus, the adoptive secondary anti-DNP antibody response of DNP-keyhole limpet hemocyanin (KLH)-primed spleen cells was completely, or almost completely, abolished by exposure of such cells to DMP-D-GL either in vivo or in vitro. Tolerance induction in vivo occurred irrespective of whether the DNP-primed cells were exposed to DNP-D-GL in the donor animal before adoptive transfer or in recipient mice after transfer. In the latter situation, it was possible to show that tolerance induction in this model occurs very rapidly (1 hr) and with relatively low doses of tolerogen (50 µg). Incubation of DNP-KLH-primed cells with DNP-D-GL in vitro under varying culture conditions also resulted in depression of the adoptive secondary response of such cells, although the kinetics and degree of tolerance induction in this way were slightly different from that obtained by in vivo tolerization. Utilizing the adoptive transfer tolerance system, it was possible to approach certain questions concerning the mechanism of tolerance induction and fate of tolerant bone marrow-derived (B) lymphocytes in the DNP-D-GL model. The possibility that suppression of anti-DNP antibody from the DNP-D-GL reflects blocking of surface receptor molecules on B lymphocytes has been ruled out by several experimental observations. The most conclusive evidence on this point derives from the failure of enzymatic treatment with trypsin to reverse the tolerant state induced by in vitro exposure of primed cells to DNP-D-GL, whereas trypsinization completely restored the immunocompetence of DNP-KLH-primed cells rendered unresponsive by exposure to DNP-ovalbumin in vitro. The present studies also demonstrate that the tolerant state induced by DNP-D-GL represents a predominantly irreversible inactivation of specific B lymphocytes. This conclusion is derived from experiments in which it was found that tolerance was maintained through as many as two serial adoptive transfers performed over a period of time of at least 24 days from the single exposure of such cells to the tolerogen. Moreover, the possibility that maintenance of tolerance through such serial transfers was due to inadvertent transfer of tolerogenic doses of DNP-D-GL was definitively ruled out. It appears, therefore, that DNP-specific tolerance induced by DNP-D-GL is an example of irreversible inhibition of cell reactivity to antigen reflecting yet-to-be-determined events at the intra- and subcellular levels.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L. Antigen binding cells in tolerance and immunity. Transplant Rev. 1970;5:105–129. doi: 10.1111/j.1600-065x.1970.tb00358.x. [DOI] [PubMed] [Google Scholar]
  2. Andersson B., Blomgren H. Evidence for thymus-independent humoral antibody production in mice against polyvinylpyrrolidone and E. coli lipopolysaccharide. Cell Immunol. 1971 Oct;2(5):411–424. doi: 10.1016/0008-8749(71)90052-9. [DOI] [PubMed] [Google Scholar]
  3. BENACERRAF B., LEVINE B. B. Immunological specificity of delayed and immediate hypersensitivity reactions. J Exp Med. 1962 May 1;115:1023–1036. doi: 10.1084/jem.115.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Britton S. Regulation of antibody synthesis against Escherichia coli endotoxin. IV. Induction of paralysis in vitro by treating normal lymphoid cells with antigen. J Exp Med. 1969 Mar 1;129(3):469–482. doi: 10.1084/jem.129.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers V. S., Sercarz E. E. Induction and reversal of immune paralysis in vitro. J Exp Med. 1970 Nov;132(5):845–857. doi: 10.1084/jem.132.5.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiller J. M., Habicht G. S., Weigle W. O. Kinetic differences in unresponsiveness of thymus and bone marrow cells. Science. 1971 Feb 26;171(3973):813–815. doi: 10.1126/science.171.3973.813. [DOI] [PubMed] [Google Scholar]
  7. Davie J. M., Paul W. E., Katz D. H., Benacerraf B. Hapten-specific tolerance. Preferential depression of the high affinity antibody response. J Exp Med. 1972 Sep 1;136(3):426–438. doi: 10.1084/jem.136.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies A. J., Carter R. L., Leuchars E., Wallis V., Dietrich F. M. The morphology of immune reactions in normal, thymectomized and reconstituted mice. 3. Response to bacterial antigens: salmonellar flagellar antigen and pneumococcal plysaccharide. Immunology. 1970 Dec;19(6):945–957. [PMC free article] [PubMed] [Google Scholar]
  9. Diener E., Armstrong W. D. Immunological tolerance in vitro: kinetic studies at the cellular level. J Exp Med. 1969 Mar 1;129(3):591–603. doi: 10.1084/jem.129.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diener E., Feldmann M. Relationship between antigen and antibody-induced suppression of immunity. Transplant Rev. 1972;8:76–103. doi: 10.1111/j.1600-065x.1972.tb01565.x. [DOI] [PubMed] [Google Scholar]
  11. Golan D. T., Borel Y. Nonantigenicity and immunologic tolerance: the role of the carrier in the induction of tolerance to the hapten. J Exp Med. 1971 Oct 1;134(4):1046–1061. doi: 10.1084/jem.134.4.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Green I., Benacerraf B., Stone S. H. The effect of the amount of mycobacterial adjuvants on the immune response of strain 2, strain 13 and Hartley strain guinea pigs to DNP-PLL and DNP-GL. J Immunol. 1969 Sep;103(3):403–412. [PubMed] [Google Scholar]
  13. HUMPHREY J. H., PARROTT D. M., EAST J. STUDIES ON GLOBULIN AND ANTIBODY PRODUCTION IN MICE THYMECTOMIZED AT BIRTH. Immunology. 1964 Jul;7:419–439. [PMC free article] [PubMed] [Google Scholar]
  14. Havas H. F. The effect of the carrier protein on the immune response and on the induction of tolerance in mice to the 2,4-dinitrophenyl determinant. Immunology. 1969 Dec;17(6):819–829. [PMC free article] [PubMed] [Google Scholar]
  15. Howard J. G. Cellular events in the induction and loss of tolerance to pneumococcal polysaccharides. Transplant Rev. 1972;8:50–75. doi: 10.1111/j.1600-065x.1972.tb01564.x. [DOI] [PubMed] [Google Scholar]
  16. Howard J. G., Christie G. H., Courtenay B. M., Leuchars E., Davies A. J. Studies on immunological paralysis. VI. Thymic-independence of tolerance and immunity to type 3 pneumococcal polysaccharide. Cell Immunol. 1971 Dec;2(6):614–626. doi: 10.1016/0008-8749(71)90009-8. [DOI] [PubMed] [Google Scholar]
  17. Howard J. G., Elson J., Christie G. H., Kinsky R. G. Studies on immunological paralysis. II. The detection and significance of antibod-forming cells in the spleen during immunological paralysis with type 3 pneumococcal polysaccharide. Clin Exp Immunol. 1969 Jan;4(1):41–53. [PMC free article] [PubMed] [Google Scholar]
  18. Katz D. H., Benacerraf B. The regulatory influence of activated T cells on B cell responses to antigen. Adv Immunol. 1972;15:1–94. doi: 10.1016/s0065-2776(08)60683-5. [DOI] [PubMed] [Google Scholar]
  19. Katz D. H., Davie J. M., Paul W. E., Benacerraf B. Carrier function in anti-hapten antibody responses. IV. Experimental conditions for the induction of hapten-specific tolerance or for the stimulation of anti-hapten anamnestic responses by "nonimmunogenic" hapten-polypeptide conjugates. J Exp Med. 1971 Jul 1;134(1):201–223. doi: 10.1084/jem.134.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten antibody responses. 3. Stimulation of antibody synthesis and facilitation of hapten-specific secondary antibody responses by graft-versus-host reactions. J Exp Med. 1971 Feb 1;133(2):169–186. doi: 10.1084/jem.133.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten immune responses. I. Enhancement of primary and secondary anti-hapten antibody responses by carrier preimmunization. J Exp Med. 1970 Aug 1;132(2):261–282. doi: 10.1084/jem.132.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mitchison N. A. Immunological paralysis induced by brief exposure of cells to protein antigens. Immunology. 1968 Oct;15(4):531–547. [PMC free article] [PubMed] [Google Scholar]
  24. Möller E., Sjöberg O. Antigen-binding cells in immune and tolerant animals. Transplant Rev. 1972;8:26–49. [PubMed] [Google Scholar]
  25. Möller G., Michael G. Frequency of antigen-sensitive cells to thymus-independent antigens. Cell Immunol. 1971 Aug;2(4):309–316. doi: 10.1016/0008-8749(71)90065-7. [DOI] [PubMed] [Google Scholar]
  26. Naor D., Sulitzeanu D. Binding of 125I-BSA to lymphoid cells of tolerant mice. Int Arch Allergy Appl Immunol. 1969;36(1):112–113. doi: 10.1159/000230728. [DOI] [PubMed] [Google Scholar]
  27. Osborne D. P., Jr, Katz D. H. The allogeneic effect in inbred mice. I. Experimental conditions for the enhancement of hapten-specific secondary antibody responses by the graft-versus-host reaction. J Exp Med. 1972 Sep 1;136(3):439–454. doi: 10.1084/jem.136.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sjöberg O. Rapid breaking of tolerance against Escherichia coli lipopolysaccharide in vivo and in vitro. J Exp Med. 1972 Apr 1;135(4):850–859. doi: 10.1084/jem.135.4.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Theis G. A., Siskind G. W. Selection of cell populations in induction of tolerance: affinity of antibody formed in partially tolerant rabbits. J Immunol. 1968 Jan;100(1):138–141. [PubMed] [Google Scholar]
  30. Unanue E. R., Perkins W. D., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med. 1972 Oct 1;136(4):885–906. doi: 10.1084/jem.136.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Werblin T. P., Siskind G. W. Effect of tolerance and immunity on antibody affinity. Transplant Rev. 1972;8:104–136. doi: 10.1111/j.1600-065x.1972.tb01566.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES