Abstract
Adult BALB/c mice were injected with Moloney sarcoma virus (MSV) after which the animals' lymphocytes were examined for activity against Moloney leukemia virus (MLV) antigen-bearing target cells at 5-day intervals for 30 days. Lymphocytes from these animals and appropriately matched controls were fractionated into B cell-deficient (primarily T cells) and T cell-deficient (primarily B cells) subpopulations. Macrophages were removed using iron powder and magnetism. The unfractionated lymphocytes, T cells, and non-T cells were then tested in microcytotoxicity tests. Antigen-specific activity was found in the unfractionated lymphocytes from animals that had not yet developed palpable tumors and from regressor animals. The T cells were active just before tumor development and just after regression; however, by day 30 after virus infection (8–10 days after regression) the T cell subpopulation was much less active. The non-T cell subpopulation was also active before tumor development and soon after regression. However, this activity continued to rise after regression and was highest at 30 days. At day 15 (peak tumor size) neither subpopulation was active. The activity was demonstrated to be specific for the MLV-determined cell surface antigen by testing on control target cells that were MLV antigen negative and by comparison of the inhibitory effects with lymphocytes immune to a nonpertinent antigen as well as normal lymphocytes. The non-T cells were tested for activity before and after removal of macrophages with iron powder and magnetism. Such cells were significantly more active after removal of the macrophages. These data demonstrate specific T cell and non-T cell activity in microcytotoxicity tests with a tumor-specific system and strongly suggest that the non-T cell activity described herein is a B cell function.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander P., Bensted J., Delorme E. J., Hall J. G., Hodgett J. The cellular immune response to primary sarcomata in rats. II. Abnormal responses of nodes draining the tumour. Proc R Soc Lond B Biol Sci. 1969 Nov 18;174(1035):237–251. doi: 10.1098/rspb.1969.0090. [DOI] [PubMed] [Google Scholar]
- Barski G., Youn J. K. Evolution of cell-mediated immunity in mice bearing an antigenic tumor. Influence of tumor growth and surgical removal. J Natl Cancer Inst. 1969 Jul;43(1):111–121. [PubMed] [Google Scholar]
- Bassin R. H., Tuttle N., Fischinger P. J. Isolation of murine sarcoma virus-transformed mouse cells which are negative for leukemia virus from agar suspension cultures. Int J Cancer. 1970 Jul 15;6(1):95–107. doi: 10.1002/ijc.2910060114. [DOI] [PubMed] [Google Scholar]
- Basten A., Sprent J., Miller J. F. Receptor for antibody-antigen complexes used to separate T cells from B cells. Nat New Biol. 1972 Feb 9;235(58):178–180. doi: 10.1038/newbio235178a0. [DOI] [PubMed] [Google Scholar]
- Bianco C., Patrick R., Nussenzweig V. A population of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes. I. Separation and characterization. J Exp Med. 1970 Oct 1;132(4):702–720. doi: 10.1084/jem.132.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle W. An extension of the 51Cr-release assay for the estimation of mouse cytotoxins. Transplantation. 1968 Sep;6(6):761–764. doi: 10.1097/00007890-196809000-00002. [DOI] [PubMed] [Google Scholar]
- Celada F., Asjö B., Klein G. The presence of Moloney virus induced antigen on antibody-producing cells. Clin Exp Immunol. 1970 Mar;6(3):317–323. [PMC free article] [PubMed] [Google Scholar]
- Chuat J. C., Berman L., Gunvén P., Klein E. Studies on Murine Sarcoma Virus: antigenic characterization of Murine Sarcoma Virus induced tumor cells. Int J Cancer. 1969 Jul 15;4(4):465–479. doi: 10.1002/ijc.2910040412. [DOI] [PubMed] [Google Scholar]
- Fefer A., McCoy J. L., Perk K., Glynn J. P. Immunologic, virologic, and pathologic studies of regression of autochthonous Moloney sarcoma virus-induced tumors in mice. Cancer Res. 1968 Aug;28(8):1577–1585. [PubMed] [Google Scholar]
- Forman J., Britton S. Heterogeneity of the effector cells in the cytotoxic reaction against allogeneic lymphoma cells. J Exp Med. 1973 Feb 1;137(2):369–386. doi: 10.1084/jem.137.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golstein P., Wigzell H., Blomgren H., Svedmyr E. A. Cells mediating specific in vitro cytotoxicity. II. Probable autonomy of thymus-processed lymphocytes (T cells) for the killing of allogeneic target cells. J Exp Med. 1972 Apr 1;135(4):890–906. doi: 10.1084/jem.135.4.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding B., Pudifin D. J., Gotch F., MacLennan I. C. Cytotoxic lymphocytes from rats depleted of thymus processed cells. Nat New Biol. 1971 Jul 21;232(29):80–82. doi: 10.1038/newbio232080a0. [DOI] [PubMed] [Google Scholar]
- Hasek M., Skamene E., Karakoz I., Chutná J., Nouza K., Bubeník J., Sovová V., Nemec M., Jonák J. Studies on the mechanism of rejection of tolerated skin homografts and abrogation of immunological tolerance by hyperimmune serum. Folia Biol (Praha) 1968;14(6):411–424. [PubMed] [Google Scholar]
- Lamon E. W., Skurzak H. M., Klein E. The lymphocyte response to a primary viral neoplasm (MSV) through its entire course in BALB-c mice. Int J Cancer. 1972 Nov;10(3):581–588. doi: 10.1002/ijc.2910100317. [DOI] [PubMed] [Google Scholar]
- Lamon E. W., Skurzak H. M., Klein E., Wigzell H. In vitro cytotoxicity by a nonthymus-processed lymphocyte population with specificity for a virally determined tumor cell surface antigen. J Exp Med. 1972 Nov 1;136(5):1072–1079. doi: 10.1084/jem.136.5.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LoBuglio A. F., Cotran R. S., Jandl J. H. Red cells coated with immunoglobulin G: binding and sphering by mononuclear cells in man. Science. 1967 Dec 22;158(3808):1582–1585. doi: 10.1126/science.158.3808.1582. [DOI] [PubMed] [Google Scholar]
- Lundgren G., Zukoski C. F., Möller G. Differential effects of human granulocytes and lymphocytes on human fibroblasts in vitro. Clin Exp Immunol. 1968 Oct;3(8):817–836. [PMC free article] [PubMed] [Google Scholar]
- MacLennan I. C., Loewi G., Harding B. The role of immunoglobulins in lymphocyte-mediated cell damage, in vitro. I. Comparison of the effects of target cell specific antibody and normal serum factors on cellular damage by immune and non-immune lymphocytes. Immunology. 1970 Mar;18(3):397–404. [PMC free article] [PubMed] [Google Scholar]
- Mikulska Z. B., Smith C., Alexander P. Evidence for an immunological reaction of the host directed against its own actively growing primary tumor. J Natl Cancer Inst. 1966 Jan;36(1):29–35. [PubMed] [Google Scholar]
- Mitchell G. F., Miller J. F. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):821–837. doi: 10.1084/jem.128.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Möller G., Svehag S. E. Specificiy of lymphocyte-mediated cytotoxicity induced by in vitro antibody-coated target cells. Cell Immunol. 1972 May;4(1):1–19. doi: 10.1016/0008-8749(72)90001-9. [DOI] [PubMed] [Google Scholar]
- Oren M. E., Herberman R. B., Canty T. G. Immune response to Gross virus-induced lymphoma. II. Kinetics of the cellular immune response. J Natl Cancer Inst. 1971 Mar;46(3):621–628. [PubMed] [Google Scholar]
- Perlmann P., Holm G. Cytotoxic effects of lymphoid cells in vitro. Adv Immunol. 1969;11:117–193. doi: 10.1016/s0065-2776(08)60479-4. [DOI] [PubMed] [Google Scholar]
- Raff M. C. Surface antigenic markers for distinguishing T and B lymphocytes in mice. Transplant Rev. 1971;6:52–80. doi: 10.1111/j.1600-065x.1971.tb00459.x. [DOI] [PubMed] [Google Scholar]
- Raff M. C. Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence. Immunology. 1970 Oct;19(4):637–650. [PMC free article] [PubMed] [Google Scholar]
- Skurzak H. M., Klein E., Yoshida T. O., Lamon E. W. Synergistic or antgonistic effect of different antibody concentrations on in vitro lymphocyte cytotoxicity in the Moloney sarcoma virus system. J Exp Med. 1972 Apr 1;135(4):997–1002. doi: 10.1084/jem.135.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprent J., Miller J. F. Activation of thymus cells by histocompatibility antigens. Nat New Biol. 1971 Sep 15;234(50):195–198. doi: 10.1038/newbio234195a0. [DOI] [PubMed] [Google Scholar]
- Sprent J., Miller J. F. Interaction of thymus lymphocytes with histoincompatible cells. 3. Immunological characteristics of recirculating lymphocytes derived from activated thymus cells. Cell Immunol. 1972 Feb;3(2):213–230. doi: 10.1016/0008-8749(72)90161-x. [DOI] [PubMed] [Google Scholar]
- Strouk V., Grundner G., Fenyö E. M., Lamon E., Skurzak H., Klein G. Lack of distinctive surface antigen on cells transformed by murine sarcoma virus. J Exp Med. 1972 Aug 1;136(2):344–352. doi: 10.1084/jem.136.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasugi M., Klein E. A microassay for cell-mediated immunity. Transplantation. 1970 Mar;9(3):219–227. doi: 10.1097/00007890-197003000-00005. [DOI] [PubMed] [Google Scholar]
- Unanue E. R., Grey H. M., Rabellino E., Campbell P., Schmidtke J. Immunoglobulins on the surface of lymphocytes. II. The bone marrow as the main source of lymphocytes with detectable surface-bound immunoglobulin. J Exp Med. 1971 Jun 1;133(6):1188–1198. doi: 10.1084/jem.133.6.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wigzell H., Sundqvist K. G., Yoshida T. O. Separation of cells according to surface antigens by the use of antibody-coated columns. Fractionation of cells carrying immunoglobulins and blood group antigen. Scand J Immunol. 1972;1(1):75–87. doi: 10.1111/j.1365-3083.1972.tb03737.x. [DOI] [PubMed] [Google Scholar]
- Yoshida T. O., Andersson B. Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes. Scand J Immunol. 1972;1(4):401–408. doi: 10.1111/j.1365-3083.1972.tb03306.x. [DOI] [PubMed] [Google Scholar]