Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 Jan 1;137(1):127–139. doi: 10.1084/jem.137.1.127

PURIFIED PROTEIN DERIVATIVE OF TUBERCULIN INDUCES IMMUNOGLOBULIN PRODUCTION IN NORMAL MOUSE SPLEEN CELLS

Bengt S Nilsson 1, Barnet M Sultzer 1, Wesley W Bullock 1
PMCID: PMC2139361  PMID: 4120093

Abstract

Purified protein derivative (PPD) tuberculin induced immunoglobulin production in cultures of nonimmune mouse spleen cells, as measured by plaque-forming cells (PFC) against sheep erythrocytes (SRBC), horse erythrocytes, and 4-hydroxy-3,5-dinitrophenacetyl-SRBC. The increase started between 15 and 20 h of culture and reached a peak at 48–72 h. Higher PPD concentrations resulted in earlier peak responses than low concentrations. The Ig produced was mainly 19S and of very low avidity. The response elicited by PPD was of the same type as that caused by lipopolysaccharide of bacterial origin. Mitomycin treatment of cells before culture did not change the numbers of PFC/106 recovered cells but the cell recovery was considerably lower. Also injection of PPD in vivo resulted in increased numbers of PFC. On the basis of these results it is suggested that PPD nonspecifically activates a majority of the B cell population to proliferation and immunoglobulin synthesis.

Full Text

The Full Text of this article is available as a PDF (597.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Davies A. J. Requirement of thymus-dependent lymphocytes for potentiation by adjuvants of antibody formation. Nature. 1971 Oct 1;233(5318):330–332. doi: 10.1038/233330a0. [DOI] [PubMed] [Google Scholar]
  2. Andersson J., Möller G., Sjöberg O. Selective induction of DNA synthesis in T and B lymphocytes. Cell Immunol. 1972 Aug;4(4):381–393. doi: 10.1016/0008-8749(72)90040-8. [DOI] [PubMed] [Google Scholar]
  3. Andersson J., Sjöberg O., Möller G. Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur J Immunol. 1972 Aug;2(4):349–353. doi: 10.1002/eji.1830020410. [DOI] [PubMed] [Google Scholar]
  4. Andersson J., Sjöberg O., Möller G. Mitogens as probes for immunocyte activation and cellular cooperation. Transplant Rev. 1972;11:131–177. doi: 10.1111/j.1600-065x.1972.tb00048.x. [DOI] [PubMed] [Google Scholar]
  5. Blomgren H., Svedmyr E. Evidence for thymic dependence of PHA-reactive cells in spleen and lymph nodes and independence in bone marrow. J Immunol. 1971 Mar;106(3):835–841. [PubMed] [Google Scholar]
  6. DAVID J. R., AL-ASKARI S., LAWRENCE H. S., THOMAS L. DELAYED HYPERSENSITIVITY IN VITRO. I. THE SPECIFICITY OF INHIBITION OF CELL MIGRATION BY ANTIGENS. J Immunol. 1964 Aug;93:264–273. [PubMed] [Google Scholar]
  7. INGRAHAM J. S., BUSSARD A. APPLICATION OF A LOCALIZED HEMOLYSIN REACTION FOR SPECIFIC DETECTION OF INDIVIDUAL ANTIBODY-FORMING CELLS. J Exp Med. 1964 Apr 1;119:667–684. doi: 10.1084/jem.119.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janis M., Back F. H. Potentiation of in vitro lymphocyte reactivity. Nature. 1970 Jan 17;225(5229):238–239. doi: 10.1038/225238a0. [DOI] [PubMed] [Google Scholar]
  9. Janossy G., Greaves M. F. Lymphocyte activation. I. Response of T and B lymphocytes to phytomitogens. Clin Exp Immunol. 1971 Oct;9(4):483–498. [PMC free article] [PubMed] [Google Scholar]
  10. Janossy G., Greaves M. F. Lymphocyte activation. II. discriminating stimulation of lymphocyte subpopulations by phytomitogens and heterologous antilymphocyte sera. Clin Exp Immunol. 1972 Mar;10(3):525–536. [PMC free article] [PubMed] [Google Scholar]
  11. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PETERSON R. D., COOPER M. D., GOOD R. A. THE PATHOGENESIS OF IMMUNOLOGIC DEFICIENCY DISEASES. Am J Med. 1965 Apr;38:579–604. doi: 10.1016/0002-9343(65)90135-x. [DOI] [PubMed] [Google Scholar]
  13. Pasanen V. J., Mäkelä O. Effect of the number of haptens coupled to each erythrocyte on haemolytic plaque formation. Immunology. 1969 Mar;16(3):399–407. [PMC free article] [PubMed] [Google Scholar]
  14. RAFFEL S. Immunopathology of tuberculosis. Am Rev Tuberc. 1956 Aug;74(2 Pt 2):60–74. doi: 10.1164/artpd.1956.74.2-2.60. [DOI] [PubMed] [Google Scholar]
  15. SEIBERT F. B. The isolation of three different proteins and two polysaccharides from tuberculin by alcohol fractionation; their chemical and biological properties. Am Rev Tuberc. 1949 Jan;59(1):86–101. doi: 10.1164/art.1949.59.1.86. [DOI] [PubMed] [Google Scholar]
  16. Spitznagel J. K., Allison A. C. Mode of action of adjuvants: effects on antibody responses to macrophage-associated bovine serum albumin. J Immunol. 1970 Jan;104(1):128–139. [PubMed] [Google Scholar]
  17. Stobo J. D., Rosenthal A. S., Paul W. E. Functional heterogeneity of murine lymphoid cells. I. Responsiveness to and surface binding of concanavalin A and phytohemagglutinin. J Immunol. 1972 Jan;108(1):1–17. [PubMed] [Google Scholar]
  18. Thor D. E., Jureziz R. E., Veach S. R., Miller E., Dray S. Cell migration inhibition factor released by antigen from human peripheral lymphocytes. Nature. 1968 Aug 17;219(5155):755–757. doi: 10.1038/219755a0. [DOI] [PubMed] [Google Scholar]
  19. Unanue E. R., Askonas B. A., Allison A. C. A role of macrophages in the stimulation of immune responses by adjuvants. J Immunol. 1969 Jul;103(1):71–78. [PubMed] [Google Scholar]
  20. Valentine F. T., Lawrence H. S. Lymphocyte stimulation: transfer of cellular hypersensitivity to antigen in vitro. Science. 1969 Sep 5;165(3897):1014–1016. doi: 10.1126/science.165.3897.1014. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES