Abstract
General methods were developed and applied to the biosynthesis and purification of products of activated lymphocytes available in minute quantities. The activity studied here was the migration inhibitory factor (MIF) produced by purified protein derivative (PPD)- or concanavalin A (Con A)-stimulated lymphocytes obtained from one guinea pig or less. The methods selected yielded results in terms of two chemical parameters characteristic of the molecules involved, namely Kd on Sephadex G-75 and isoionic point, pI, on isoelectric focusing. When supernatants were fractionated on G-75 columns, there were several areas even in control supernatants which produced migration inhibition relative to medium controls. However, in PPD- and Con A-stimulated supernatants, at least one peak of MIF activity was found solely in the stimulated cultures, with a Kd of 0.15. A double-labeling technique was used to characterize the proteins of this peak. Control, unstimulated cultures were labeled with [14C]leucine and stimulated cultures were labeled with [3H]leucine. After mixing the supernatants and G-75 filtration, a major "ratiolabeled" broad peak. i.e. one with increased 3H/14C ratio, was found. When a narrow portion of this peak about Kd 0.15, containing most of the MIF activity, was subjected to analytical isoelectric focusing, all of the label was associated with proteins of lower net charge than albumin. A unique ratiolabeled peak was found in PPD- and Con A-stimulated fractions with a pI of approx. 5.3. A micropreparative isoelectric focusing technique was developed and yielded MIF activity in the same region as the major ratiolabeled peak. Further study will be required to ascertain whether the ratiolabeled protein is MIF. By following the Kd, pI, and 3H/14C labeling ratio, at least 14 products of activated lymphocytes, synthesized either de novo or in increased amounts, could be distinguished.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos H. E., Lachmann P. J. The immunological specificity of a macrophage inhibition factor. Immunology. 1970 Feb;18(2):269–278. [PMC free article] [PubMed] [Google Scholar]
- Bennett B., Bloom B. R. Reactions in vivo and in vitro produced by a soluble substance associated with delayed-type hypersensitivity. Proc Natl Acad Sci U S A. 1968 Mar;59(3):756–762. doi: 10.1073/pnas.59.3.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett B., Bloom B. R. Studies on the migration inhibitory factor associated with delayed-type hypersensitivity: cytodynamics and specificity. Transplantation. 1967 Jul;5(4 Suppl):996–1000. [PubMed] [Google Scholar]
- Bloom B. R., Bennett B. Relation of the migration inhibitory factor (MIF) to delayed-type hypersensitivity reactions. Ann N Y Acad Sci. 1970 Feb 13;169(1):258–265. doi: 10.1111/j.1749-6632.1970.tb55994.x. [DOI] [PubMed] [Google Scholar]
- Bloom B. R., Jimenez L. Migration inhibitory factor and the cellular basis of delayed-type hypersensitivity reactions. Am J Pathol. 1970 Sep;60(3):453–468. [PMC free article] [PubMed] [Google Scholar]
- David J. R. Suppression of delayed hypersensitivity in vitro by inhibition of protein synthesis. J Exp Med. 1965 Dec 1;122(6):1125–1134. doi: 10.1084/jem.122.6.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dumonde D. C., Page D. A., Matthew M., Wolstencroft R. A. Role of lymphocyte activation products (LAP) in cell-mediated immunity. I. Preparation and partial purification of guinea-pig LAP. Clin Exp Immunol. 1972 Jan;10(1):25–47. [PMC free article] [PubMed] [Google Scholar]
- Gellert M. Formation of covalent circles of lambda DNA by E. coli extracts. Proc Natl Acad Sci U S A. 1967 Jan;57(1):148–155. doi: 10.1073/pnas.57.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy R., Rosenberg S. A. The early stimulation of protein synthesis in sensitized guinea pig lymph node cells by antigen. J Immunol. 1972 Apr;108(4):1073–1079. [PubMed] [Google Scholar]
- Pick E., Brostoff J., Krejci J., Turk J. L. Interaction between "sensitized lymphocytes" and antigen in vitro. II. Mitogen-induced release of skin reactive and macrophage migration inhibitory factors. Cell Immunol. 1970 May;1(1):92–109. doi: 10.1016/0008-8749(70)90063-8. [DOI] [PubMed] [Google Scholar]
- Pick E., Krejci J., Cech K., Turk J. L. Interaction between 'sensitized lymphocytes' and antigen in vitro. I. The release of a skin reactive factor. Immunology. 1969 Nov;17(5):741–767. [PMC free article] [PubMed] [Google Scholar]
- Remold H. G., David J. R. Further studies on migration inhibitory factor (MIF): evidence for its glycoprotein nature. J Immunol. 1971 Oct;107(4):1090–1098. [PubMed] [Google Scholar]
- Remold H. G., Katz A. B., Haber E., David J. R. Studies on migration inhibitory factor (MIF): recovery of MIF activity after purification by gel filtration and disc electrophoresis. Cell Immunol. 1970 May;1(1):133–145. doi: 10.1016/0008-8749(70)90066-3. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Levy R. Synthesis of nuclear-associated proteins by lymphocytes within minutes after contact with phytohemagglutinin. J Immunol. 1972 Apr;108(4):1105–1109. [PubMed] [Google Scholar]
- Stobo J. D., Rosenthal A. S., Paul W. E. Functional heterogeneity of murine lymphoid cells. I. Responsiveness to and surface binding of concanavalin A and phytohemagglutinin. J Immunol. 1972 Jan;108(1):1–17. [PubMed] [Google Scholar]
- Svejcar J., Pekárek J., Johanovský J. Studies on production of biologically active substances which inhibit cell migration in supernatants and extracts of hypersensitive lymphoid cells incubated with specific antigen in vitro. Immunology. 1968 Jul;15(1):1–11. [PMC free article] [PubMed] [Google Scholar]
- Yoshida T., Reisfeld R. A. Two fractions with macrophage migration inhibitory activity from sensitized lymphocyte cultures. Nature. 1970 May 30;226(5248):856–857. doi: 10.1038/226856a0. [DOI] [PubMed] [Google Scholar]
- Zweerink H. J., Joklik W. K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970 Jul;41(3):501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]
