Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 Sep 1;138(3):508–521. doi: 10.1084/jem.138.3.508

STUDIES ON HUMAN PLASMA α2-MACROGLOBULIN-ENZYME INTERACTIONS

EVIDENCE FOR PROTEOLYTIC MODIFICATION OF THE SUBUNIT CHAIN STRUCTURE

Peter C Harpel 1
PMCID: PMC2139409  PMID: 4269559

Abstract

Human plasma α2-macroglobulin is an inhibitor of circulating proteases that function in hemostatic and inflammatory reactions but the biochemical nature of its interaction with these enzymes is not well defined. This investigation has found that α2-macroglobulin is comprised of subunit chains of 185,000 molecular weight as analyzed by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. Trypsin, thrombin, plasmin, and plasma kallikrein in amounts completely bound to α2-macroglobulin attacked one region in the subunit chain producing a single derivative with a molecular weight of 85,000 indicating that hydrolysis occurred at or near the center of the parent chain. The proteolytic derivative was also identified in an α2-macroglobulin preparation from plasma incubated with the plasminogen activator, urokinase. α2-macroglobulin functionally capable of binding enzyme appeared to be required both for limiting tryptic hydrolysis and for confining the concentration dependent increase in the derivative chain to the 1st min of incubation since acid-denatured α2-macroglobulin that failed to bind trypsin was extensively degraded. Three derivative chains resulted from the interaction of α2-macroglobulin with chymotrypsin demonstrating the presence of at least two chymotrypsin susceptible regions in the precursor chain. Reduction of the α2-macroglobulin-enzyme mixture was required for the identification of the derivative subunit chains establishing that these cleavage products were covalently linked to the parent molecule by disulfide bridges. Thus, α2-inacroglobulin acts as a substrate for circulating proteases, a finding which may also pertain to the mechanism of action of other plasma enzyme inhibitors.

Full Text

The Full Text of this article is available as a PDF (820.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALKJAERSIG N., FLETCHER A. P., SHERRY S. The mechanism of clot dissolution by plasmin. J Clin Invest. 1959 Jul;38(7):1086–1095. doi: 10.1172/JCI103885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banker G. A., Cotman C. W. Measurement of free electrophoretic mobility and retardation coefficient of protein-sodium dodecyl sulfate complexes by gel electrophoresis. A method to validate molecular weight estimates. J Biol Chem. 1972 Sep 25;247(18):5856–5861. [PubMed] [Google Scholar]
  3. Baumstark J. S. Studies on the elastase-serum protein interaction. I. Molecular identity of the inhibitors in human serum and direct demonstration of inhibitor-elastase complexes by zone and immunoelectrophoresis. Arch Biochem Biophys. 1967 Mar 20;118(3):619–630. doi: 10.1016/0003-9861(67)90397-9. [DOI] [PubMed] [Google Scholar]
  4. Boyde T. R., Pryme I. F. Alpha2-macroglobulin binding of trypsin, chymotrypsin, papain, and cationic aspartate aminotransferase. Clin Chim Acta. 1968 Jul;21(1):9–14. doi: 10.1016/0009-8981(68)90003-x. [DOI] [PubMed] [Google Scholar]
  5. Colman R. W., Mattler L., Sherry S. Studies on the prekallikrein (kallikreinogen)--kallikrein enzyme system of human plasma. I. Isolation and purification of plasma kallikreins. J Clin Invest. 1969 Jan;48(1):11–22. doi: 10.1172/JCI105959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fenton J. W., 2nd, Campbell W. P., Harrington J. C., Miller K. D. Large-scale preparation and preliminary characterization of human thrombin. Biochim Biophys Acta. 1971 Jan 19;229(1):26–32. doi: 10.1016/0005-2795(71)90313-8. [DOI] [PubMed] [Google Scholar]
  7. Frénoy J. P., Razafimahaleo E., Bourrillon R. Etudes sur la structure de L'a 2 -macroglobuline humaine. 3. Isolement et caractérisation d'une sous-unité. Biochim Biophys Acta. 1972 Jan 26;257(1):111–121. [PubMed] [Google Scholar]
  8. Ganrot P. O. Inhibition of plasmin activity by alpha-2-macroglobulin. Clin Chim Acta. 1967 May;16(2):328–329. doi: 10.1016/0009-8981(67)90201-x. [DOI] [PubMed] [Google Scholar]
  9. Ganrot P. O. Separation of two trypsin-binding alpha-2-globulins of human serum. Clin Chim Acta. 1966 May;13(5):597–601. doi: 10.1016/0009-8981(66)90163-x. [DOI] [PubMed] [Google Scholar]
  10. Gentou C. Structure quaternaire des alpha-2-macroglobulines humaines normales. C R Acad Sci Hebd Seances Acad Sci D. 1968 Jun 17;266(25):2358–2361. [PubMed] [Google Scholar]
  11. Gershman L. C., Stracher A., Dreizen P. Subunit structure of myosin. 3. A proposed model for rabbit skeletal myosin. J Biol Chem. 1969 May 25;244(10):2726–2736. [PubMed] [Google Scholar]
  12. HAVERBACK B. J., DYCE B., BUNDY H. F., WIRTSCHAFTER S. K., EDMONDSON H. A. Protein binding of pancreatic proteolytic enzymes. J Clin Invest. 1962 May;41:972–980. doi: 10.1172/JCI104576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harpel P. C. C1 inactivator inhibition by plasmin. J Clin Invest. 1970 Mar;49(3):568–575. doi: 10.1172/JCI106267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harpel P. C. Separation of plasma thromboplastin antecedent from kallikrein by the plasma 2 -macroglobulin, kallikrein inhibitor. J Clin Invest. 1971 Oct;50(10):2084–2090. doi: 10.1172/JCI106702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harpel P. C. Studies on the interaction between collagen and a plasma kallikrein-like activity. Evidence for a surface-active enzyme system. J Clin Invest. 1972 Jul;51(7):1813–1822. doi: 10.1172/JCI106983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones J. M., Creeth J. M., Kekwick R. A. Thio reduction of human 2 -macroglobulin. The subunit structure. Biochem J. 1972 Mar;127(1):187–197. doi: 10.1042/bj1270187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaplan A. P., Austen K. F. The fibrinolytic pathway of human plasma. Isolation and characterization of the plasminogen proactivator. J Exp Med. 1972 Dec 1;136(6):1378–1393. doi: 10.1084/jem.136.6.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lanchantin G. F., Plesset M. L., Friedmann J. A., Hart D. W. Dissociation of esterolytic and clotting activities of thrombin by trypsin-binding macroglobulin. Proc Soc Exp Biol Med. 1966 Feb;121(2):444–449. doi: 10.3181/00379727-121-30800. [DOI] [PubMed] [Google Scholar]
  19. MEHL J. W., O'CONNELL W., DEGROOT J. MACROGLOBULIN FROM HUMAN PLASMA WHICH FORMS AN ENZYMATICALLY ACTIVE COMPOUND WITH TRYPSIN. Science. 1964 Aug 21;145(3634):821–822. doi: 10.1126/science.145.3634.821. [DOI] [PubMed] [Google Scholar]
  20. MULLER-EBERHARD H. J. A new supporting medium for preparative electrophoresis. Scand J Clin Lab Invest. 1960;12:33–37. [PubMed] [Google Scholar]
  21. McConnell D. J. Inhibitors of kallikrein in human plasma. J Clin Invest. 1972 Jul;51(7):1611–1623. doi: 10.1172/JCI106962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mosesson M. W., Finlayson J. S., Umfleet R. A., Galanakis D. Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates. J Biol Chem. 1972 Aug 25;247(16):5210–5219. [PubMed] [Google Scholar]
  23. Ogston D., Ogston C. M., Ratnoff O. D., Forbes C. D. Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors. J Clin Invest. 1969 Oct;48(10):1786–1801. doi: 10.1172/JCI106145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ozawa K., Laskowski M., Jr The reactive site of trypsin inhibitors. J Biol Chem. 1966 Sep 10;241(17):3955–3961. [PubMed] [Google Scholar]
  25. Ratnoff O. D. Some relationships among hemostasis, fibrinolytic phenomena, immunity, and the inflammatory response. Adv Immunol. 1969;10:145–227. doi: 10.1016/s0065-2776(08)60417-4. [DOI] [PubMed] [Google Scholar]
  26. Rinderknecht H., Geokas M. C. Role for a 2 -macroglobulin in haemostatic balance. Nat New Biol. 1972 Sep 27;239(91):116–117. doi: 10.1038/newbio239116a0. [DOI] [PubMed] [Google Scholar]
  27. Robbins K. C., Bernabe P., Arzadon L., Summaria L. The primary structure of human plasminogen. I. The NH 2 -terminal sequences of human plasminogen and the S-carboxymethyl heavy (A) and light (B) chain derivatives of plasmin. J Biol Chem. 1972 Nov 10;247(21):6757–6762. [PubMed] [Google Scholar]
  28. SCHONENBERGER M., SCHMIDTBERGER R., SCHULTZE H. E. Uber das alpha 2-Makroglobulin. Z Naturforsch B. 1958 Dec;13B(12):761–772. [PubMed] [Google Scholar]
  29. Saunders R., Dyce B. J., Vannier W. E., Haverback B. J. The separation of alpha-2 macroglobulin into five components with differing electrophoretic and enzyme-binding properties. J Clin Invest. 1971 Nov;50(11):2376–2383. doi: 10.1172/JCI106736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinbuch M., Blatrix C. H., Josso F. Action anti-protéase de l'gamma2-macroglobuline. II. Son role d'antithrombine progressive. Rev Fr Etud Clin Biol. 1968 Feb;13(2):179–186. [PubMed] [Google Scholar]
  31. Steinbuch M., Blatrix C., Drouet J., Amouch P. Study of the 2 macroglobulin-plasmin interaction mechanism. Pathol Biol (Paris) 1972 Dec;(Suppl):52–55. [PubMed] [Google Scholar]
  32. Tung J. S., Knight C. A. Relative importance of some factors affecting the electrophoretic migration of proteins in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1972 Jul;48(1):153–163. doi: 10.1016/0003-2697(72)90179-0. [DOI] [PubMed] [Google Scholar]
  33. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  34. Wicher V., Dolovich J. Interactions of Bacillus subtilis alkaline proteinases with alpha 2 -macroglobulin and alpha 1 -antitrypsin. Int Arch Allergy Appl Immunol. 1971;40(6):779–788. doi: 10.1159/000230462. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES