Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 Sep 1;138(3):672–685. doi: 10.1084/jem.138.3.672

GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

I. SPECIFICITY OF THE EFFECTOR CELLS

James Forman 1, Göran Möller 1
PMCID: PMC2139411  PMID: 4269560

Abstract

Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific.

Full Text

The Full Text of this article is available as a PDF (849.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basten A., Miller J. F., Sprent J., Pye J. A receptor for antibody on B lymphocytes. I. Method of detection and functional significance. J Exp Med. 1972 Mar 1;135(3):610–626. doi: 10.1084/jem.135.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berke G., Levey R. H. Cellular immunoabsorbents in transplantation immunity. Specific in vitro deletion and recovery of mouse lymphoid cells sensitized against allogeneic tumors. J Exp Med. 1972 Apr 1;135(4):972–984. doi: 10.1084/jem.135.4.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloom B. R. In vitro approaches to the mechanism of cell-mediated immune reactions. Adv Immunol. 1971;13:101–208. doi: 10.1016/s0065-2776(08)60184-4. [DOI] [PubMed] [Google Scholar]
  4. Britton S. When allogeneic mouse spleen cells are mixed in vitro the T-cells secrete a product which guides the maturation of B-cells. Scand J Immunol. 1972;1(1):89–98. doi: 10.1111/j.1365-3083.1972.tb03738.x. [DOI] [PubMed] [Google Scholar]
  5. Canty T. G., Wunderlich J. R. Quantitative in vitro assay of cytotoxic cellular immunity. J Natl Cancer Inst. 1970 Oct;45(4):761–772. [PubMed] [Google Scholar]
  6. Cohen I. R., Feldman M. The lysis of fibroblasts by lymphocytes sensitized in vitro: specific antigen activates a nonspecific effect. Cell Immunol. 1970 Nov;1(5):521–535. doi: 10.1016/0008-8749(70)90039-0. [DOI] [PubMed] [Google Scholar]
  7. Evans R., Alexander P. Mechanism of immunologically specific killing of tumour cells by macrophages. Nature. 1972 Mar 24;236(5343):168–170. doi: 10.1038/236168a0. [DOI] [PubMed] [Google Scholar]
  8. Feldman M., Cohen I. R., Wekerle H. T-cell mediated immunity in vitro: an analysis of antigen recognition and target cell lysis. Transplant Rev. 1972;12:57–90. doi: 10.1111/j.1600-065x.1972.tb00053.x. [DOI] [PubMed] [Google Scholar]
  9. Forman J., Britton S. Heterogeneity of the effector cells in the cytotoxic reaction against allogeneic lymphoma cells. J Exp Med. 1973 Feb 1;137(2):369–386. doi: 10.1084/jem.137.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Golstein P., Erik M. D., Svedmyr A. J., Wigzell H. Cells mediating specific in vitro cytotoxicity. I. Detection of receptor-bearing lymphocytes. J Exp Med. 1971 Dec 1;134(6):1385–1402. doi: 10.1084/jem.134.6.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inbar M., Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1418–1425. doi: 10.1073/pnas.63.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnston J. M., Wilson D. B. Origin of immunoreactive lymphocytes in rats. Cell Immunol. 1970 Oct;1(4):430–444. doi: 10.1016/0008-8749(70)90019-5. [DOI] [PubMed] [Google Scholar]
  13. Klein E., Klein G. Specificity of homograft rejection in vivo, assessed by inoculation of artificially mixed compatible and incompatible tumor cells. Cell Immunol. 1972 Sep;5(1):201–208. [PubMed] [Google Scholar]
  14. Lonai P., Wekerle H., Feldman M. Fractionation of specific antigen-reactive cells in an in vitro system of cell-mediated immunity. Nat New Biol. 1972 Feb 23;235(60):235–236. doi: 10.1038/newbio235235a0. [DOI] [PubMed] [Google Scholar]
  15. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mishell R. I., Dutton R. W. Immunization of normal mouse spleen cell suspensions in vitro. Science. 1966 Aug 26;153(3739):1004–1006. doi: 10.1126/science.153.3739.1004. [DOI] [PubMed] [Google Scholar]
  17. Möller G., Sjöberg O., Andersson J. Mitogen-induced lymphocyte-mediated cytotoxicity in vitro: effect of mitogens selectively activating T or B cells. Eur J Immunol. 1972 Dec;2(6):586–592. doi: 10.1002/eji.1830020621. [DOI] [PubMed] [Google Scholar]
  18. Möller G., Svehag S. E. Specificiy of lymphocyte-mediated cytotoxicity induced by in vitro antibody-coated target cells. Cell Immunol. 1972 May;4(1):1–19. doi: 10.1016/0008-8749(72)90001-9. [DOI] [PubMed] [Google Scholar]
  19. Svedmyr E. A., Hodes R. J. On the specificity of cell-mediated cytotoxicity in vitro. Cell Immunol. 1970 Dec;1(6):644–654. doi: 10.1016/0008-8749(70)90029-8. [DOI] [PubMed] [Google Scholar]
  20. Wagner H., Harris A. W., Feldmann M. Cell-mediated immune response in vitro. II. The role of thymus and thymus-derived lymphocytes. Cell Immunol. 1972 May;4(1):39–50. doi: 10.1016/0008-8749(72)90004-4. [DOI] [PubMed] [Google Scholar]
  21. Wilson D. B., Silvers W. K., Nowell P. C. Quantitative studies on the mixed lymphocyte interaction in rats. II. Relationship of the proliferative response to the immunologic status of the donors. J Exp Med. 1967 Oct 1;126(4):655–665. doi: 10.1084/jem.126.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yoshida T. O., Andersson B. Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes. Scand J Immunol. 1972;1(4):401–408. doi: 10.1111/j.1365-3083.1972.tb03306.x. [DOI] [PubMed] [Google Scholar]
  23. Zbar B., Wepsic H. T., Borsos T., Rapp H. J. Tumor-graft rejection in syngeneic guinea pigs: evidence for a two-step mechanism. J Natl Cancer Inst. 1970 Feb;44(2):473–481. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES