Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 Sep 1;138(3):625–644. doi: 10.1084/jem.138.3.625

CYTOSTATIC ELIMINATION OF SYNGENEIC RAT TUMOR CELLS IN VITRO BY NONSPECIFICALLY ACTIVATED MACROPHAGES

R Keller 1
PMCID: PMC2139416  PMID: 4353819

Abstract

Syngeneic tumor cell lines induced in inbred DA rats by polyoma virus, dimethylbenzanthracene, or methylcholanthrene were interacted in vitro with syngeneic effector cells. Glycogen-induced peritoneal exudate cells, predominantly polymorphonuclear leukocytes, and proteose peptone-induced peritoneal cells, principally macrophages, were the effector cells employed. Activated, nonimmune macrophages or exudative polymorphonuclear leukocytes produced pronounced morphological changes in syngeneic tumor cells as evidenced by a substantial reduction in tumor cell numbers and appearance of shrunken cells, even though there was no increase in cell debris. Polymorphonuclear leukocytes exerted a generally similar but quantitatively much diminished effect. These effector cells constantly produced a decrease in the incorporation by tumor cells of DNA precursors such as [3H]thymidine and of RNA precursors such as [3H]uridine. In this regard, the effector cells were quite refractory to high doses of X-irradiation. Interaction of target cells with activated, nonimmune macrophages yielded low but consistent signs of cytotoxicity, whereas polymorphonuclear leukocytes gave no such effects. Elimination of functional macrophages by silica, an agent specifically toxic for macrophages, resulted in unrestricted tumor cell proliferation despite continued generation of cytotoxicity. Accordingly, cytostatic mechanisms appear to play a predominant role in the elimination of tumor cells by nonimmune phagocytes. Evidence from a variety of experimental approaches suggest that the cytostatic effect is dependent on cell-to-cell contact.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Harington J. S., Birbeck M. An examination of the cytotoxic effects of silica on macrophages. J Exp Med. 1966 Aug 1;124(2):141–154. doi: 10.1084/jem.124.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. E., Sprent J., Miller J. F. Cell-to-cell interaction in the immune response. 8. Radiosensitivity of thymus-derived lymphocytes. J Exp Med. 1972 Mar 1;135(3):711–717. doi: 10.1084/jem.135.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENNETT B., OLD L. J., BOYSE E. A. THE PHAGOCYTOSIS OF TUMOR CELLS IN VITRO. Transplantation. 1964 Mar;2:183–202. doi: 10.1097/00007890-196403000-00003. [DOI] [PubMed] [Google Scholar]
  4. Ball C. R., Poynter R. W., Van den Berg H. W. A novel method for measuring incorporation of radioactive precursors into nucleic acids and proteins of cells in monolayer culture. Anal Biochem. 1972 Mar;46(1):101–107. doi: 10.1016/0003-2697(72)90399-5. [DOI] [PubMed] [Google Scholar]
  5. Bennett B. Isolation and cultivation in vitro of macrophages from various sources in the mouse. Am J Pathol. 1966 Jan;48(1):165–181. [PMC free article] [PubMed] [Google Scholar]
  6. Capron A., Wattré P., Capron M., Lefebve M. N. Influence du parasitisme à Dipetalonema viteae et à Schistosoma mansoni sur la croissance de tumeurs expérimentales. C R Acad Sci Hebd Seances Acad Sci D. 1972 Jul 31;275(5):719–722. [PubMed] [Google Scholar]
  7. Chambers V. C., Weiser R. S. The ultrastructure of sarcoma I cells and immune macrophages during their interaction in the peritoneal cavities of immune C57BL-6 mice. Cancer Res. 1972 Feb;32(2):413–419. [PubMed] [Google Scholar]
  8. Evans R., Alexander P. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature. 1970 Nov 14;228(5272):620–622. doi: 10.1038/228620a0. [DOI] [PubMed] [Google Scholar]
  9. Evans R., Alexander P. Mechanism of immunologically specific killing of tumour cells by macrophages. Nature. 1972 Mar 24;236(5343):168–170. doi: 10.1038/236168a0. [DOI] [PubMed] [Google Scholar]
  10. GORER P. A. Some recent work on tumor immunity. Adv Cancer Res. 1956;4:149–186. doi: 10.1016/s0065-230x(08)60724-1. [DOI] [PubMed] [Google Scholar]
  11. GRANGER G. A., WEISER R. S. HOMOGRAFT TARGET CELLS: SPECIFIC DESTRUCTION IN VITRO BY CONTACT INTERACTION WITH IMMUNE MACROPHAGES. Science. 1964 Sep 25;145(3639):1427–1429. doi: 10.1126/science.145.3639.1427. [DOI] [PubMed] [Google Scholar]
  12. Good R. A., Finstad J. Essential relationship between the lymphoid system, immunity, and malignancy. Natl Cancer Inst Monogr. 1969 Jul;31:41–58. [PubMed] [Google Scholar]
  13. Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Adjuvant induced resistance to tumor development in mice. Proc Soc Exp Biol Med. 1972 Mar;139(3):1053–1056. doi: 10.3181/00379727-139-36296. [DOI] [PubMed] [Google Scholar]
  14. Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Possible role of macrophage mediated nonspecific cytotoxicity in tumour resistance. Nat New Biol. 1972 Jan 12;235(54):48–50. doi: 10.1038/newbio235048a0. [DOI] [PubMed] [Google Scholar]
  15. KALISS N. Immunological enhancement of tumor homografts in mice: a review. Cancer Res. 1958 Oct;18(9):992–1003. [PubMed] [Google Scholar]
  16. Keller R. Beziehungen zwischen Tumorwachstum und Immunität. Schweiz Med Wochenschr. 1972 Aug 19;102(33):1148–1151. [PubMed] [Google Scholar]
  17. Keller R., Hess M. W. Tumour growth and non-specific immunity in rats: the mechanisms involved in inhibition of tumour growth. Br J Exp Pathol. 1972 Oct;53(5):570–577. [PMC free article] [PubMed] [Google Scholar]
  18. Keller R., Jones V. E. Role of activated macrophages and antibody in inhibition and enhancement of tumour growth in rats. Lancet. 1971 Oct 16;2(7729):847–849. doi: 10.1016/s0140-6736(71)90222-4. [DOI] [PubMed] [Google Scholar]
  19. Keller R., Mueller-Eckhardt C., Kayser F. H., Keller H. U. Interrelations between different typs of cells. I. A comparative study of the biological properties of a cationic polypeptide from lysosomes of polymorphonuclear leukocytes and other cationic compounds. Int Arch Allergy Appl Immunol. 1968;33(3):239–258. [PubMed] [Google Scholar]
  20. Klein G. Experimental studies in tumor imminology. Fed Proc. 1969 Nov-Dec;28(6):1739–1753. [PubMed] [Google Scholar]
  21. Klein G. Tumor antigens. Annu Rev Microbiol. 1966;20:223–252. doi: 10.1146/annurev.mi.20.100166.001255. [DOI] [PubMed] [Google Scholar]
  22. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morton D. L. Immunological studies with human neoplasms. J Reticuloendothel Soc. 1971 Jul;10(1):137–160. [PubMed] [Google Scholar]
  24. OLD L. J., BOYSE E. A. IMMUNOLOGY OF EXPERIMENTAL TUMORS. Annu Rev Med. 1964;15:167–186. doi: 10.1146/annurev.me.15.020164.001123. [DOI] [PubMed] [Google Scholar]
  25. Ogilvie B. M., Simpson E., Keller R. Tumour growth in nematode-infected animals. Lancet. 1971 Apr 3;1(7701):678–680. doi: 10.1016/s0140-6736(71)92683-3. [DOI] [PubMed] [Google Scholar]
  26. Old L. J., Boyse E. A. Antigens of tumors and leukemias induced by viruses. Fed Proc. 1965 Sep-Oct;24(5):1009–1017. [PubMed] [Google Scholar]
  27. Pearsall N. N., Weiser R. S. The macrophage in allograft immunity. I. Effects of silica as a specific macrophage toxin. J Reticuloendothel Soc. 1968 Apr;5(2):107–120. [PubMed] [Google Scholar]
  28. Pickaver A. H., Ratcliffe N. A., Williams A. E., Smith H. Cytotoxic effects of peritoneal neutrophils on a syngeneic rat tumour. Nat New Biol. 1972 Feb 9;235(58):186–187. doi: 10.1038/newbio235186a0. [DOI] [PubMed] [Google Scholar]
  29. Prehn R. T. Perspectives on oncogenesis: does immunity stimulate or inhibit neoplasia? J Reticuloendothel Soc. 1971 Jul;10(1):1–16. [PubMed] [Google Scholar]
  30. Ruskin J., Rengton J. S. Role for the macrophage in acquired immunity to phylogenetically unrelated intracellular organisms. Antimicrob Agents Chemother (Bethesda) 1968;8:474–477. doi: 10.1128/AAC.8.4.474. [DOI] [PubMed] [Google Scholar]
  31. SCHINDLER R., DAY M., FISCHER G. A. Culture of neoplastic mast cells and their synthesis of 5-hydroxytryptamine and histamine in vitro. Cancer Res. 1959 Jan;19(1):47–51. [PubMed] [Google Scholar]
  32. Voisin G. A. Immunological facilitation, a broadening of the concept of the enhancement phenomenon. Prog Allergy. 1971;15:328–485. [PubMed] [Google Scholar]
  33. WEISS D. W., FAULKIN L. J., Jr, DEOME K. B. ACQUISITION OF HEIGHTENED RESISTANCE AND SUSCEPTIBILITY TO SPONTANEOUS MOUSE MAMMARY CARCINOMAS IN THE ORIGINAL HOST. Cancer Res. 1964 May;24:732–741. [PubMed] [Google Scholar]
  34. Yashphe D. J. Immunological factors in nonspecific stimulation of host resistance to syngeneic tumors. A review. Isr J Med Sci. 1971 Jan;7(1):90–107. [PubMed] [Google Scholar]
  35. Zbar B., Bernstein I. D., Rapp H. J. Suppression of tumor growth at the site of infection with living Bacillus Calmette-Guérin. J Natl Cancer Inst. 1971 Apr;46(4):831–839. [PubMed] [Google Scholar]
  36. Zbar B., Wepsic H. T., Borsos T., Rapp H. J. Tumor-graft rejection in syngeneic guinea pigs: evidence for a two-step mechanism. J Natl Cancer Inst. 1970 Feb;44(2):473–481. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES