Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 Jan 31;137(2):359–368. doi: 10.1084/jem.137.2.359

EFFECTS OF SERUM ON MEMBRANE TRANSPORT

I. SEPARATION AND PRELIMINARY CHARACTERIZATION OF FACTORS WHICH DEPRESS LYSINE OR STIMULATE ADENOSINE TRANSPORT IN RABBIT ALVEOLAR MACROPHAGES

Phyllis R Strauss 1, Richard D Berlin 1
PMCID: PMC2139478  PMID: 4119589

Abstract

The effects of normal rabbit serum (NRS) on two transport systems in rabbit lung macrophages have been examined. A 20 min preincubation with serum was required for the effects, which were retained for at least 40 min after serum was removed. No serum was present during the transport studies. (a) Preincubation with 0.5 or 1.0% NRS resulted in depression of lysine transport to 59 ± 2.6% (SE, 31 observations) of control levels. The activity was heat stable to 100°C for 30 min and lost after dialysis. Pretreatment with serum did not alter the intracellular concentration of lysine attained when cells were then incubated with 10 mM lysine for 30 min. The relative depression of lysine transport by serum was unaltered by preloading with such high concentrations of lysine. (b) Preincubation with 5% NRS resulted in enhancement of adenosine transport by 35 ± 2.3% (SE, 60 observations). Activity was stable to heating at 65°C for 40 min but lost at 100°C for 20 min. It was nondialyzable. Total radioactivity accumulated after 30 min incubation with 1 mM adenosine was unaffected by serum pretreatment. The two activities were separable by passage over Sephadex G25.

Full Text

The Full Text of this article is available as a PDF (646.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker E. L. The relationship of the chemotactic behavior of the complement-derived factors, C3a, C5a, and C567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes. J Exp Med. 1972 Feb 1;135(2):376–387. doi: 10.1084/jem.135.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berken A., Benacerraf B. Properties of antibodies cytophilic for macrophages. J Exp Med. 1966 Jan 1;123(1):119–144. doi: 10.1084/jem.123.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biggar W. D., Holmes B., Good R. A. Opsonic defect in patients with cystic fibrosis of the pancreas. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1716–1719. doi: 10.1073/pnas.68.8.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christensen H. N. Some special kinetic problems of transport. Adv Enzymol Relat Areas Mol Biol. 1969;32:1–20. doi: 10.1002/9780470122778.ch1. [DOI] [PubMed] [Google Scholar]
  5. Cohen A. B., Cline M. J. The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics. J Clin Invest. 1971 Jul;50(7):1390–1398. doi: 10.1172/JCI106622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cunningham D. D., Pardee A. B. Transport changes rapidly initiated by serum addition to "contact inhibited" 3T3 cells. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1049–1056. doi: 10.1073/pnas.64.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  8. David J. R. Mediators produced by sensitized lymphocytes. Fed Proc. 1971 Nov-Dec;30(6):1730–1735. [PubMed] [Google Scholar]
  9. EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
  10. HEILMAN D. H. THE SELECTIVE TOXICITY OF ENDOTOXIN FOR PHAGOCYTIC CELLS OF THE RETICULOENDOTHELIAL SYSTEM. Int Arch Allergy Appl Immunol. 1965;26:63–79. doi: 10.1159/000229555. [DOI] [PubMed] [Google Scholar]
  11. HEINZ E., WALSH P. M. Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J Biol Chem. 1958 Dec;233(6):1488–1493. [PubMed] [Google Scholar]
  12. Hare J. D. Studies on the mechanism of serum stimulation of uridine uptake in serum-less mouse cells. Biochim Biophys Acta. 1972 Mar 17;255(3):905–916. doi: 10.1016/0005-2736(72)90402-6. [DOI] [PubMed] [Google Scholar]
  13. Hawkins R. A., Berlin R. D. Purine transport in polymorphonuclear leukocytes. Biochim Biophys Acta. 1969 Mar 11;173(2):324–337. doi: 10.1016/0005-2736(69)90115-1. [DOI] [PubMed] [Google Scholar]
  14. Holley R. W., Kiernan J. A. "Contact inhibition" of cell division in 3T3 cells. Proc Natl Acad Sci U S A. 1968 May;60(1):300–304. doi: 10.1073/pnas.60.1.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inchley C., Grey H. M., Uhr J. W. The cytophilic activity of human immunoglobulins. J Immunol. 1970 Aug;105(2):362–369. [PubMed] [Google Scholar]
  16. Lay W. H., Nussenzweig V. Receptors for complement of leukocytes. J Exp Med. 1968 Nov 1;128(5):991–1009. doi: 10.1084/jem.128.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LoBuglio A. F., Cotran R. S., Jandl J. H. Red cells coated with immunoglobulin G: binding and sphering by mononuclear cells in man. Science. 1967 Dec 22;158(3808):1582–1585. doi: 10.1126/science.158.3808.1582. [DOI] [PubMed] [Google Scholar]
  18. Mauel J., Defendi V. Regulation of DNA synthesis in mouse macrophages. II. Studies on mechanisms of action of the macrophage growth factor. Exp Cell Res. 1971 Apr;65(2):377–385. doi: 10.1016/0014-4827(71)90016-4. [DOI] [PubMed] [Google Scholar]
  19. PARDEE A. B. CELL DIVISION AND A HYPOTHESIS OF CANCER. Natl Cancer Inst Monogr. 1964 May;14:7–20. [PubMed] [Google Scholar]
  20. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  21. Tsan M. F., Berlin R. D. Effect of phagocytosis on membrane transport of nonelectrolytes. J Exp Med. 1971 Oct 1;134(4):1016–1035. doi: 10.1084/jem.134.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tsan M. F., Berlin R. D. Membrane transport in the rabbit alveolar macrophage. The specificity and characteristics of amino acid transport systems. Biochim Biophys Acta. 1971 Jul 6;241(1):155–169. doi: 10.1016/0005-2736(71)90313-0. [DOI] [PubMed] [Google Scholar]
  23. Tubergen D. G., Feldman J. D., Pollock E. M., Lerner R. A. Production of macrophage migration inhibition factor by continuous cell lines. J Exp Med. 1972 Feb 1;135(2):255–266. doi: 10.1084/jem.135.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weber M. J., Rubin H. Uridine transport and RNA synthesis in growing and in density-inhibited animal cells. J Cell Physiol. 1971 Apr;77(2):157–168. doi: 10.1002/jcp.1040770205. [DOI] [PubMed] [Google Scholar]
  25. Wiebel F., Baserga R. Early alterations in amino acid pools and protein synthesis of diploid fibroblasts stimulated to synthesize DNA by addition of serum. J Cell Physiol. 1969 Oct;74(2):191–202. doi: 10.1002/jcp.1040740211. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES