Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1973 Jan 31;137(2):343–358. doi: 10.1084/jem.137.2.343

SEPARATION OF HUMAN LYMPHOID CELLS INTO G1, S, AND G2 CELL CYCLE POPULATIONS BY USE OF A VELOCITY SEDIMENTATION TECHNIQUE

Lloyd K Everson 1, Donald N Buell 1, G Nicholas Rogentine Jr 1
PMCID: PMC2139489  PMID: 4568300

Abstract

Human lymphoid tissue culture cells can be separated according to cell size and corresponding cell cycle phase with a velocity sedimentation centrifugation method employing a continuous 5–20% wt/wt Ficoll gradient. A 7-fold increase in streaming limit was achieved by placing a buffer zone of isosmolar 5% Ficoll on top of the gradient before application of the cell load. The various pooled populations of cells from upper, middle, and lower areas of the gradient were characterized using autoradiographic, TCA-precipitable 3H]thymidine incorporation, and Fuelgen microspectrophotometric methods. The upper range of the gradient contains cells in the G1 cell cycle phase; the lower range, cells in the G2 phase; cells found in the middle of the gradient belong largely to the S phase of the cell cycle. These gradient-separated cell pools contained relatively little contamination with cells from other phases of the cell cycle and, when explanted from the gradient into fresh growth media, showed growth patterns characteristic of synchronized cell populations. This system of cell separation provides a useful tool for investigating the relationship of the cell cycle to surface membrane and metabolic characteristics in human lymphoid cell culture systems.

Full Text

The Full Text of this article is available as a PDF (989.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayad S. R., Fox M., Winstanley D. The use of ficoll gradient centrifugation to produce synchronous mouse lymphoma cells. Biochem Biophys Res Commun. 1969 Nov 6;37(4):551–558. doi: 10.1016/0006-291x(69)90844-4. [DOI] [PubMed] [Google Scholar]
  2. BOOTSMA D., BUDKE L., VOS O. STUDIES ON SYNCHRONOUS DIVISION OF TISSUE CULTURE CELLS INITIATED BY EXCESS THYMIDINE. Exp Cell Res. 1964 Jan;33:301–309. doi: 10.1016/s0014-4827(64)81035-1. [DOI] [PubMed] [Google Scholar]
  3. Barrett J. C. A mathematical model of the mitotic cycle and its application to the interpretation of percentage labeled mitoses data. J Natl Cancer Inst. 1966 Oct;37(4):443–450. [PubMed] [Google Scholar]
  4. Boone C. W., Harell G. S., Bond H. E. The resolution of mixtures of viable mammalian cells into homogeneous fractions by zonal centrifugation. J Cell Biol. 1968 Feb;36(2):369–378. doi: 10.1083/jcb.36.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bronk B. V. On radioactive labeling of proliferating cells: the graph of labeled mitosis. J Theor Biol. 1969 Mar;22(3):468–492. doi: 10.1016/0022-5193(69)90016-2. [DOI] [PubMed] [Google Scholar]
  6. Finegold I., Fahey J. L., Granger H. Synthesis of immunoglobulins by human cell lines in tissue culture. J Immunol. 1967 Nov;99(5):839–848. [PubMed] [Google Scholar]
  7. Galavazi G., Schenk H., Bootsma D. Synchronization of mammalian cells in vitro by inhibition of the DNA synthesis. I. Optimal conditions. Exp Cell Res. 1966 Feb;41(2):428–437. doi: 10.1016/s0014-4827(66)80149-0. [DOI] [PubMed] [Google Scholar]
  8. Gavin J. R., 3rd, Roth J., Jen P., Freychet P. Insulin receptors in human circulating cells and fibroblasts. Proc Natl Acad Sci U S A. 1972 Mar;69(3):747–751. doi: 10.1073/pnas.69.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hampar B., Derge J. G., Martos L. M., Walker J. L. Synthesis of Epstein-Barr virus after activation of the viral genome in a "virus-negative" human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine (thymidine kinase-virus antigen-immunofluorescence-herpesvirus fingerprints). Proc Natl Acad Sci U S A. 1972 Jan;69(1):78–82. doi: 10.1073/pnas.69.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klein E., Eskeland T., Inoue M., Strom R., Johansson B. Surface immunoglobulin-moieties on lymphoid cells. Exp Cell Res. 1970 Sep;62(1):133–148. doi: 10.1016/0014-4827(79)90515-9. [DOI] [PubMed] [Google Scholar]
  11. Macdonald H. R., Miller R. G. Synchronization of mouse L-cells by a velocity sedimentation technique. Biophys J. 1970 Sep;10(9):834–842. doi: 10.1016/S0006-3495(70)86338-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maekawa T., Tsuchiya J. A method for the direct estimation of the length of G1, S and G2 phase. Exp Cell Res. 1968 Oct;53(1):55–64. doi: 10.1016/0014-4827(68)90351-0. [DOI] [PubMed] [Google Scholar]
  13. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  14. Morris N. R., Cramer J. W., Reno D. A simple method for concentration of cells in the DNA synthetic period of the mitotic cycle. Exp Cell Res. 1967 Oct;48(1):216–218. doi: 10.1016/0014-4827(67)90305-9. [DOI] [PubMed] [Google Scholar]
  15. Nias A. H., Fox M. Synchronization of mammalian cells with respect to the mitotic cycle. Cell Tissue Kinet. 1971 Jul;4(4):375–398. doi: 10.1111/j.1365-2184.1971.tb01547.x. [DOI] [PubMed] [Google Scholar]
  16. PAINTER R. B., DREW R. M. Studies on deoxyribonucleic acid metabolism in human cancer cell cultures (HeLa). I. The temporal relationships of deoxyribonucleic acid synthesis to mitosis and turnover time. Lab Invest. 1959 Jan-Feb;8(1):278–285. [PubMed] [Google Scholar]
  17. Papageorgiou P. S., Henley W. L., Glade P. R. Production and characterization of migration inhibitory factor(s) (MIF) of established lymphoid and non-lymphoid cell lines. J Immunol. 1972 Feb;108(2):494–504. [PubMed] [Google Scholar]
  18. Pellegrino M. A., Ferrone S., Natali P. G., Pellegrino A., Reisfeld R. A. Expression of HL-A antigens in synchronized cultures of human lymphocytes. J Immunol. 1972 Feb;108(2):573–576. [PubMed] [Google Scholar]
  19. Peterson E. A., Evans W. H. Separation of bone marrow cells by sedimentation at unit gravity. Nature. 1967 May 20;214(5090):824–825. doi: 10.1038/214824a0. [DOI] [PubMed] [Google Scholar]
  20. Rogentine G. N., Jr, Gerber P. HL-A antigens of human lymphoid cells in long-term tissue culture. Transplantation. 1969 Jul;8(1):28–37. doi: 10.1097/00007890-196907000-00004. [DOI] [PubMed] [Google Scholar]
  21. Schindler R., Ramseier L., Schaer J. C., Grieder A. Studies on the division cycle of mammalian cells. 3. Preparation of synchronously dividing cell populations by isotonic sucrose gradient centrifugation. Exp Cell Res. 1970 Jan;59(1):90–96. doi: 10.1016/0014-4827(70)90627-0. [DOI] [PubMed] [Google Scholar]
  22. Shall S., McClelland A. J. Synchronization of mouse fibroblast LS cells grown in suspension culture. Nat New Biol. 1971 Jan 13;229(2):59–61. doi: 10.1038/newbio229059a0. [DOI] [PubMed] [Google Scholar]
  23. Takahashi M., Yagi Y., Moore G. E., Pressman D. Immunoglobulin production in synchronized cultures of human hematopoietic cell lines. I. Variation of cellular immunoglobulin level with the generation cycle. J Immunol. 1969 Oct;103(4):834–843. [PubMed] [Google Scholar]
  24. Tobey R. A., Anderson E. C., Petersen D. F. The effect of thymidine on the duration of G1 in Chinese hamster cells. J Cell Biol. 1967 Oct;35(1):53–59. doi: 10.1083/jcb.35.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Warmsley A. M., Pasternak C. A. The use of conventional and zonal centrifugation to study the life cycle of mammalian cells. Phospholipid and macromolecular synthesis in neoplastic mast cells. Biochem J. 1970 Sep;119(3):493–499. doi: 10.1042/bj1190493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES