Abstract
Microscopic examination of spleen lymphocytes discloses a small number moving at random at a given time. The majority of lymphocytes with this spontaneous movement are thymic derived. Addition of anti-Ig antibodies stimulates random movement of B lymphocytes. This movement depends upon a bivalent antibody and a metabolically active cell. The movement is inhibited by DFP, suggesting the involvement of a serine esterase. Also the anti-Ig stimulated movement of the lymphocyte is inhibited by cytochalasin B or by not allowing the cells to settle onto a surface. Lymphocytes treated with DFP or cytochalasin B, or untreated lymphocytes in suspension, capped the anti-Ig-Ig complexes. Hence, one can dissociate the surface capping of anti-Ig-Ig complexes from cell movement. We postulate that capping may result from superficial movements of the surface and/or from membrane flow, both of which are not related to actual translation of the cell on a surface. Four effects have now been observed following combination of a ligand with the antigen receptor on the B lymphocytes: redistribution on the surface of the complexes; pinocytosis and catabolism; shedding into the extracellular environment; and stimulation of translational movement.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp Cell Res. 1970 Oct;62(2):389–398. doi: 10.1016/0014-4827(70)90570-7. [DOI] [PubMed] [Google Scholar]
- Ault K. A., Karnovsky M. J., Unanue E. R. Studies on the distribution of surface immunoglobulins of human B-lymphocytes. J Clin Invest. 1973 Oct;52(10):2507–2516. doi: 10.1172/JCI107441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker E. L., Austen K. F. Mechanisms of immunologic injury of rat peritoneal mast cells. I. The effect of phosphonate inhibitors on the homocytotropic antibody-mediated histamine release and the first component of rat complement. J Exp Med. 1966 Sep 1;124(3):379–395. doi: 10.1084/jem.124.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker E. L., Ward P. A. Partial biochemical characterization of the activated esterase required in the complement-dependent chemotaxis of rabbit polymorphonuclear leukocytes. J Exp Med. 1967 Jun 1;125(6):1021–1030. doi: 10.1084/jem.125.6.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edidin M., Weiss A. Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2456–2459. doi: 10.1073/pnas.69.9.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engers H. D., Unanue E. R. The fate of anti-Ig-surface Ig complexes on B lymphocytes. J Immunol. 1973 Feb;110(2):465–475. [PubMed] [Google Scholar]
- Karnovsky M. J., Unanue E. R., Leventhal M. Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties. J Exp Med. 1972 Oct 1;136(4):907–930. doi: 10.1084/jem.136.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loor F., Forni L., Pernis B. The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins. Eur J Immunol. 1972 Jun;2(3):203–212. doi: 10.1002/eji.1830020304. [DOI] [PubMed] [Google Scholar]
- Rosenstreich D. L., Shevach E., Green I., Rosenthal A. S. The uropod-bearing lymphocyte of the guinea pig. Evidence for thymic origin. J Exp Med. 1972 May 1;135(5):1037–1048. doi: 10.1084/jem.135.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. W., Hollers J. C. The pattern of binding of fluorescein-labeled concanavalin A to the motile lymphocyte. J Reticuloendothel Soc. 1970 Nov;8(5):458–464. [PubMed] [Google Scholar]
- Unanue E. R., Karnovsky M. J., Engers H. D. Ligand-induced movement of lymphocyte membrane macromolecules. 3. Relationship between the formation and fate of anti-Ig-surface Ig complexes and cell metabolism. J Exp Med. 1973 Mar 1;137(3):675–689. doi: 10.1084/jem.137.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unanue E. R., Perkins W. D., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med. 1972 Oct 1;136(4):885–906. doi: 10.1084/jem.136.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Petris S., Raff M. C. Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy. Nat New Biol. 1973 Feb 28;241(113):257–259. doi: 10.1038/newbio241257a0. [DOI] [PubMed] [Google Scholar]
