Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Feb 1;139(2):264–277. doi: 10.1084/jem.139.2.264

THE CYTOKINETICS OF MONOCYTOSIS IN ACUTE SALMONELLA INFECTION IN THE RAT

Alvin Volkman 1, Frank M Collins 1
PMCID: PMC2139534  PMID: 4589988

Abstract

The mechanisms responsible for monocytosis occurring in acute Salmonella infection were studied by means of isotopic labeling and autoradiography. Male (Lewis x BN)F1 hybrid rats (160–180 g) were pulse-labeled with [3H]TdR at varying intervals with respect to the time of i.v. injection of about 106 living Salmonella enteritidis. The half time for monocytes in the blood was estimated from the exponential decline in the percentage of labeled monocytes. The average generation time for dividing monocyte precursors in bone marrow was estimated by fitting a regression line to the decline in median grain counts (halving-time = TG). After an initial fall, the absolute number of blood monocytes rose to a plateau about 2.5 x normal on day 5, suggesting the reimposition of steady state conditions. The half time of monocytes in the blood of infected rats was shortened to 25 h throughout the infection, compared with 61 h estimated in uninfected rats. TG was reduced to 15 h (days 1–3) but later reverted to the preinfection level of 34 h (days 4–8). Another early response to infection was the release of immature monocytes into the blood. These cells, however, were too few to offset the initial monocytopenia. Under these conditions, with little or no division of blood monocytes, the sustained monocytosis (days 4–8) must have been due to enlargement of the dividing precursor pool. Excessive loss of monocytes from the blood thus appears to activate a feedback mechanism. However, a more direct stimulating effect on monocyte production by endotoxin could have contributed substantially to the monocytosis.

Full Text

The Full Text of this article is available as a PDF (722.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATHENS J. W., HAAB O. P., RAAB S. O., BOGGS D. R., ASHENBRUCKER H., CARTWRIGHT G. E., WINTROBE M. M. LEUKOKINETIC STUDIES. XI. BLOOD GRANULOCYTE KINETICS IN POLYCYTHEMIA VERA, INFECTION, AND MYELOFIBROSIS. J Clin Invest. 1965 May;44:778–788. doi: 10.1172/JCI105190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ATHENS J. W., HAAB O. P., RAAB S. O., MAUER A. M., ASHENBRUCKER H., CARTWRIGHT G. E., WINTROBE M. M. Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest. 1961 Jun;40:989–995. doi: 10.1172/JCI104338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ATHENS J. W., RAAB S. O., HAAB O. P., MAUER A. M., ASHENBRUCKER H., CARTWRIGHT G. E., WINTROBE M. M. Leukokinetic studies. III. The distribution of granulocytes in the blood of normal subjects. J Clin Invest. 1961 Jan;40:159–164. doi: 10.1172/JCI104230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRONKITE E. P., FLIEDNER T. M., BOND V. P., RUBINI J. R. Dynamics of hemopoietic proliferation in man and mice studied by H3-thymidine incorporation into DNA. Ann N Y Acad Sci. 1959 Jun 25;77:803–820. doi: 10.1111/j.1749-6632.1959.tb36943.x. [DOI] [PubMed] [Google Scholar]
  5. Clarkson B., Ohkita T., Ota K., Fried J. Studies of cellular proliferation in human leukemia. I. Estimation of growth rates of leukemic and normal hematopoietic cells in two adults with acute leukemia given single injections of tritiated thymidine. J Clin Invest. 1967 Apr;46(4):506–529. doi: 10.1172/JCI105553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins F. M., Mackaness G. B., Blanden R. V. Infection-immunity in experimental salmonellosis. J Exp Med. 1966 Oct 1;124(4):601–619. doi: 10.1084/jem.124.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins F. M., Mackaness G. B. Delayed hypersensitivity and arthus reactivity in relation to host resistance in salmonella-infected mice. J Immunol. 1968 Nov;101(5):830–845. [PubMed] [Google Scholar]
  8. GALBRAITH P. R., VALBERG L. S., BROWN M. PATTERNS OF GRANULOCYTE KINETICS IN HEALTH, INFECTION AND IN CARCINOMA. Blood. 1965 May;25:683–692. [PubMed] [Google Scholar]
  9. HELLMAN S., FINK M. E. GRANULOCYTE RESERVE FOLLOWING RADIATION THERAPY AS STUDIED BY THE RESPONSE TO A BACTERIAL ENDOTOXIN. Blood. 1965 Mar;25:310–324. [PubMed] [Google Scholar]
  10. HOLLAND J. J., PICKETT M. J. A cellular basis of immunity in experimental Brucella infection. J Exp Med. 1958 Sep 1;108(3):343–360. doi: 10.1084/jem.108.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lubaroff D. M., Waksman B. H. Bone marrow as source of cells in reactions of cellular hypersensitivity. II. Identification of allogeneic or hybrid cells by immunofluorescence in passively transferred tuberculin reactions. J Exp Med. 1968 Dec 1;128(6):1437–1447. doi: 10.1084/jem.128.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MACKANESS G. B. THE IMMUNOLOGICAL BASIS OF ACQUIRED CELLULAR RESISTANCE. J Exp Med. 1964 Jul 1;120:105–120. doi: 10.1084/jem.120.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mackaness G. B., Blanden R. V. Cellular immunity. Prog Allergy. 1967;11:89–140. [PubMed] [Google Scholar]
  14. Mackaness G. B., Blanden R. V., Collins F. M. Host-parasite relations in mouse typhoid. J Exp Med. 1966 Oct 1;124(4):573–583. doi: 10.1084/jem.124.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mackaness G. B. The immunology of antituberculous immunity. Am Rev Respir Dis. 1968 Mar;97(3):337–344. doi: 10.1164/arrd.1968.97.3.337. [DOI] [PubMed] [Google Scholar]
  16. Meuret G., Rau M., Kasten B., Hoffmann G. Zur Kinetik der monocytopoese und der Blutmonocyten beim menschen. Verh Dtsch Ges Inn Med. 1971;77:377–380. [PubMed] [Google Scholar]
  17. North R. J. The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J Exp Med. 1970 Sep 1;132(3):521–534. doi: 10.1084/jem.132.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spector W. G., Walters M. N., Willoughby D. A. The origin of the mononuclear cells in inflammatory exudates induced by fibrinogen. J Pathol Bacteriol. 1965 Jul;90(1):181–192. doi: 10.1002/path.1700900119. [DOI] [PubMed] [Google Scholar]
  19. VOLKMAN A., GOWANS J. L. THE ORIGIN OF MACROPHAGES FROM BONE MARROW IN THE RAT. Br J Exp Pathol. 1965 Feb;46:62–70. [PMC free article] [PubMed] [Google Scholar]
  20. Volkman A., Collins F. M. Polyarthritis associated with Salmonella infection in rats. Infect Immun. 1973 Nov;8(5):814–818. doi: 10.1128/iai.8.5.814-818.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Volkman A., Collins F. M. Recovery of delayed-type hypersensitivity in mice following suppressive doses of X-radiation. J Immunol. 1968 Nov;101(5):846–859. [PubMed] [Google Scholar]
  22. Volkman A., Collins F. M. The restorative effect of peritoneal macrophages on delayed hypersensitivity following ionizing radiation. Cell Immunol. 1971 Dec;2(6):552–566. doi: 10.1016/0008-8749(71)90004-9. [DOI] [PubMed] [Google Scholar]
  23. Vos O., Buurman W. A., Ploemacher R. E. Mobilization of haemopoietic stem cells (CFU) into the peripheral blood of the mouse; effects of endotoxin and other compounds. Cell Tissue Kinet. 1972 Nov;5(6):467–479. doi: 10.1111/j.1365-2184.1972.tb00385.x. [DOI] [PubMed] [Google Scholar]
  24. Whitelaw D. M., Batho H. F. The distribution of monocytes in the rat. Cell Tissue Kinet. 1972 May;5(3):215–225. doi: 10.1111/j.1365-2184.1972.tb00360.x. [DOI] [PubMed] [Google Scholar]
  25. Whitelaw D. M., Bell M. F., Batho H. F. Monocyte kinetics: observations after pulse labeling. J Cell Physiol. 1968 Aug;72(1):65–71. doi: 10.1002/jcp.1040720111. [DOI] [PubMed] [Google Scholar]
  26. Whitelaw D. M. The intravascular lifespan of monocytes. Blood. 1966 Sep;28(3):455–464. [PubMed] [Google Scholar]
  27. van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES