Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Apr 1;139(4):1031–1036. doi: 10.1084/jem.139.4.1031

THE K-CHAINS OF THE IMMUNOGLOBULIN FROM A CONTINUOUS CULTURE OF HUMAN LYMPHOCYTES (DAUDI) HAVE AN UNUSUAL MOLECULAR SIZE

Stephen J Kennel 1
PMCID: PMC2139566  PMID: 4816301

Abstract

Membrane-associated immunoglobulin (M-Ig) was isolated from Daudi cells which had been radioiodinated using lactoperoxidase. This M-Ig was found to have a molecular size on SDS-PAGE of 330,000 daltons. The component protein chains (µ and K) have molecular sizes of 75,000 and 33,000 daltons, respectively. Further studies showed that [3H]galactose can be incorporated into K-chains, but that extra protein and not carbohydrate was responsible for the increased molecular size of this molecule.

Full Text

The Full Text of this article is available as a PDF (319.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eskeland T., Klein E. Isolation of 7S IgM and kappa chains from the surface membrane of tissue culture cells derived from a Burkitt lymphoma. J Immunol. 1971 Nov;107(5):1368–1375. [PubMed] [Google Scholar]
  2. Kennel S. J., Lerner R. A. Isolation and characterization of plasma membrane associated immunoglobulin from cultured human diploid lymphocytes. J Mol Biol. 1973 Jun 5;76(4):485–502. doi: 10.1016/0022-2836(73)90487-7. [DOI] [PubMed] [Google Scholar]
  3. Klein E., Klein G., Nadkarni J. S., Nadkarni J. J., Wigzell H., Clifford P. Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res. 1968 Jul;28(7):1300–1310. [PubMed] [Google Scholar]
  4. Lisowska-Bernstein B., Rinuy A., Vassalli P. Absence of detectable IgM in enzymatically or biosynthetically labeled thymus-derived lymphocytes. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2879–2883. doi: 10.1073/pnas.70.10.2879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Milstein C., Brownlee G. G., Harrison T. M., Mathews M. B. A possible precursor of immunoglobulin light chains. Nat New Biol. 1972 Sep 27;239(91):117–120. doi: 10.1038/newbio239117a0. [DOI] [PubMed] [Google Scholar]
  6. Okada H., Nishioka K. Complement receptors on cell membranes. I. Evidence for two complement receptors. J Immunol. 1973 Nov;111(5):1444–1449. [PubMed] [Google Scholar]
  7. Segrest J. P., Jackson R. L., Andrews E. P., Marchesi V. T. Human erythrocyte membrane glycoprotein: a re-evaluation of the molecular weight as determined by SDS polyacrylamide gel electrophoresis. Biochem Biophys Res Commun. 1971 Jul 16;44(2):390–395. doi: 10.1016/0006-291x(71)90612-7. [DOI] [PubMed] [Google Scholar]
  8. Sherr C. J., Baur S., Grundke I., Zeligs J., Zeligs B., Uhr J. W. Cell surface immunoglobulin. 3. Isolation and characterization of immunoglobulin from nonsecretory human lymphoid cells. J Exp Med. 1972 Jun 1;135(6):1392–1405. doi: 10.1084/jem.135.6.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sherr C. J., Uhr J. W. Immunoglobulin synthesis and secretion. VI. Synthesis and intracellular transport of immunoglobulin in nonsecretory lymphoma cells. J Exp Med. 1971 Apr 1;133(4):901–920. doi: 10.1084/jem.133.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Vitetta E. S., Baur S., Uhr J. W. Cell surface immunoglobulin. II. Isolation and characterization of immunoglobulin from mouse splenic lymphocytes. J Exp Med. 1971 Jul 1;134(1):242–264. doi: 10.1084/jem.134.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES