Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Aug 1;140(2):578–590. doi: 10.1084/jem.140.2.578

VARIATION IN SUSCEPTIBILITY OF A HUMAN LYMPHOID CELL LINE TO IMMUNE LYSIS DURING THE CELL CYCLE

LACK OF CORRELATION WITH ANTIGEN DENSITY AND COMPLEMENT BINDING

Michele A Pellegrino 1, Soldano Ferrone 1, Neil R Cooper 1, Manfred P Dierich 1, Ralph A Reisfeld 1
PMCID: PMC2139582  PMID: 4527075

Abstract

Cultured human lymphoid cells RPMI 8866 at different stages of their growth cycle vary in their susceptibility to lysis by rabbit, human, and guinea pig complement activated by HL-A antibodies or heterologous antibodies directed to membrane antigens; cells in G1 phase are the least sensitive to lysis. To investigate the cause of differential susceptibility of cells RPMI 8866 to lysis, the expression of HL-A determinants and the ability of cells to react with complement were investigated. No change was detected in the density of HL-A antigens on RPMI 8866 cells in synchronous growth as determined by quantitative microabsorption assays, isotopic antiglobulin tests and yields of soluble HL-A antigens. Cells did not vary during the growth cycle in their ability to interact with complement components and in their capacity to activate the complement system through the classical or alternate pathway. These data suggest that variability in lytic susceptibility is due to changes in the structure of the cell membrane or in its ability to repair complement induced damage at certain intervals during the cell cycle. Therefore, this cell line constitutes a useful model to investigate the final steps of the cytolytic reaction.

Full Text

The Full Text of this article is available as a PDF (713.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertram J. S., Heidelberger C. Cell cycle dependency of oncogenic transformation induced by N-methyl-N'-nitro-N-nitrosoquanidine in culture. Cancer Res. 1974 Mar;34(3):526–537. [PubMed] [Google Scholar]
  2. Buell D. N., Fahey J. L. Limited periods of gene expression in immunoglobulin-synthesizing cells. Science. 1969 Jun 27;164(3887):1524–1525. doi: 10.1126/science.164.3887.1524. [DOI] [PubMed] [Google Scholar]
  3. Cikes M., Friberg S., Jr, Klein G. Quantitative studies of antigen expression in cultured murine lymphoma cells. II. Cell-surface antigens in synchronized cultures. J Natl Cancer Inst. 1972 Dec;49(6):1607–1611. doi: 10.1093/jnci/49.6.1607. [DOI] [PubMed] [Google Scholar]
  4. Cooper N. R., Polley M. J., Oldstone M. B. Failure of terminal complement components to induce lysis of Moloney virus transformed lymphocytes. J Immunol. 1974 Feb;112(2):866–868. [PubMed] [Google Scholar]
  5. Dierich M. P., Pellegrino M. A., Ferrone S., Reisfeld R. A. Evaluation of C3 receptors on lymphoid cells with different complement sources. J Immunol. 1974 May;112(5):1766–1773. [PubMed] [Google Scholar]
  6. Ferrone S., Cooper N. R., Pellegrino M. A., Reisfeld R. A. The lymphocytotoxic reaction: the mechanism of rabbit complement action. J Immunol. 1971 Oct;107(4):939–947. [PubMed] [Google Scholar]
  7. Ferrone S., Cooper N. R., Pellegrino M. A., Reisfeld R. A. The role of complement in the HL-A antibody-mediated lysis of lymphocytes. Transplant Proc. 1974 Mar;6(1):13–19. [PubMed] [Google Scholar]
  8. Ferrone S., Pellegrino M. A., Reisfeld R. A. A rapid method for direct HL-A typing of cultured lymphoid cells. J Immunol. 1971 Aug;107(2):613–615. [PubMed] [Google Scholar]
  9. Finegold I., Fahey J. L., Granger H. Synthesis of immunoglobulins by human cell lines in tissue culture. J Immunol. 1967 Nov;99(5):839–848. [PubMed] [Google Scholar]
  10. Götze D., Pellegrino M. A., Ferrone S., Reisfeld R. A. Expression of H-2 antigens during growth of cultured tumor cells. Immunol Commun. 1972;1(6):533–544. doi: 10.3109/08820137209022962. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lerner R. A., Oldstone M. B., Cooper N. R. Cell cycle-dependent immune lysis of Moloney virus-transformed lymphocytes: presence of viral antigen, accessibility to antibody, and complement activation. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2584–2588. doi: 10.1073/pnas.68.10.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Manni J. A., Müller-Eberhard H. J. The eighth component of human complement (C8): isolation, characterization, and hemolytic efficiency. J Exp Med. 1969 Nov 1;130(5):1145–1160. doi: 10.1084/jem.130.5.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayhew E. Cellular electrophoretic mobility and the mitotic cycle. J Gen Physiol. 1966 Mar;49(4):717–725. doi: 10.1085/jgp.49.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  16. Müller-Eberhard H. J. Complement. Annu Rev Biochem. 1969;38:389–414. doi: 10.1146/annurev.bi.38.070169.002133. [DOI] [PubMed] [Google Scholar]
  17. Ohanian S. H., Borsos T., Rapp H. J. Lysis of tumor cells by antibody and complement. 1. Lack of correlation between antigen content and lytic susceptibility. J Natl Cancer Inst. 1973 May;50(5):1313–1320. doi: 10.1093/jnci/50.5.1313. [DOI] [PubMed] [Google Scholar]
  18. Onodera K., Sheinin R. Macromolecular glucosamine-containing component of the surface of cultivated mouse cells. J Cell Sci. 1970 Sep;7(2):337–355. doi: 10.1242/jcs.7.2.337. [DOI] [PubMed] [Google Scholar]
  19. Pellegrino M. A., Ferrone S., Natali P. G., Pellegrino A., Reisfeld R. A. Expression of HL-A antigens in synchronized cultures of human lymphocytes. J Immunol. 1972 Feb;108(2):573–576. [PubMed] [Google Scholar]
  20. Pellegrino M. A., Ferrone S., Pellegrino A. A simple microabsorption technique for HL-A typing. Proc Soc Exp Biol Med. 1972 Feb;139(2):484–488. doi: 10.3181/00379727-139-36169. [DOI] [PubMed] [Google Scholar]
  21. Reisfeld R. A., Pellegrino M. A., Kahan B. D. Salt extraction of soluble HL-A antigens. Science. 1971 Jun 11;172(3988):1134–1136. doi: 10.1126/science.172.3988.1134. [DOI] [PubMed] [Google Scholar]
  22. Sachs H. G., Stambrook P. J., Ebert J. D. Changes in membrane potential during the cell cycle. Exp Cell Res. 1974 Feb;83(2):362–366. doi: 10.1016/0014-4827(74)90350-4. [DOI] [PubMed] [Google Scholar]
  23. Sanderson A. R. HL-A substances from human spleens. Nature. 1968 Oct 12;220(5163):192–195. doi: 10.1038/220192a0. [DOI] [PubMed] [Google Scholar]
  24. Shipley W. U. Immune cytolysis in relation to the growth cycle of Chinese hamster cells. Cancer Res. 1971 Jul;31(7):925–929. [PubMed] [Google Scholar]
  25. Sumner M. C., Collin R. C., Pasternak C. A. Synthesis and expression of surface antigens during the cell cycle. Tissue Antigens. 1973;3(6):477–484. doi: 10.1111/j.1399-0039.1973.tb00518.x. [DOI] [PubMed] [Google Scholar]
  26. Takahashi M., Yagi Y., Moore G. E., Pressman D. Immunoglobulin production in synchronized cultures of human hematopoietic cell lines. I. Variation of cellular immunoglobulin level with the generation cycle. J Immunol. 1969 Oct;103(4):834–843. [PubMed] [Google Scholar]
  27. Warmsley A. M., Phillips B., Pasternak C. A. The use of zonal centrifugation to study membrane formation during the life cycle of mammalian cells. Synthesis of 'marker' enzymes and other components of cellular organelles. Biochem J. 1970 Dec;120(4):683–688. doi: 10.1042/bj1200683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Warren L., Glick M. C. Membranes of animal cells. II. The metabolism and turnover of the surface membrane. J Cell Biol. 1968 Jun;37(3):729–746. doi: 10.1083/jcb.37.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES