Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Aug 1;140(2):481–493. doi: 10.1084/jem.140.2.481

ALLOANTISERUM-MEDIATED SUPPRESSION OF HISTOCOMPATIBILITY-LINKED Ir-GENE-CONTROLLED IMMUNE RESPONSES

SUPPRESSIVE EFFECTS OF IgG FRAGMENTS DERIVED FROM ALLOANTISERA

Harry G Bluestein 1
PMCID: PMC2139598  PMID: 4846415

Abstract

Fab, Fc, and F(ab)'2 fragments were prepared by enzymatic hydrolysis of the IgG fraction of strain 13 antistrain 2 alloantisera. These fragments were not cytotoxic to lymphocytes bearing strain 2 histocompatibility antigens, but the Fab and F(ab)'2 fragments retained functional combining sites as indicated by their ability to suppress the cytotoxicity mediated by the intact antistrain 2 antibodies. The F(ab)'2 fragments were much more efficient as inhibitors in this system than the Fab fragments. F(ab)'2 at 0.06 mg/ml and 0.45 mg/ml Fab produced comparable degrees of suppression. The F(ab)'2 at 0.06 mg/ml completely suppressed DNP copolymer of L-glutamic acid and L-lysine (GL)-stimulated tritiated thymidine incorporation. The monovalent Fab at 0.45 mg/ml, however, had no significant effect on the in vitro responses to DNP-GL. Addition of the intact alloantisera can be delayed 3 h after initiation of the antigen-stimulated cultures with no loss of suppression. After a delay of 6 h 45% suppression was observed. The requirement for the divalent molecule and the observation that effective suppression of the in vitro responses is still obtained when the alloantiserum is added several hours after initiation of the cultures both suggest that the immunosuppression results from an active process affecting the lymphocyte membrane that renders the cell refractory to the antigenic stimulus.

Full Text

The Full Text of this article is available as a PDF (735.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
  2. Bluestein H. G., Ellman L., Green I., Benacerraf B. Specific immune response genes of the guinea pig. 3. Linkage of the GA and GT immune response genes to histocompatibility genotypes in inbred guinea pigs. J Exp Med. 1971 Dec 1;134(6):1529–1537. doi: 10.1084/jem.134.6.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bluestein H. G., Green I., Benacerraf B. Specific immune response genes of the guinea pig. II. Relationship between the poly-L-lysine gene and the genes controlling immune responsiveness to copolymers of L-glutamic acid and L-alanine and L-glutamic acid and L-tyrosine in random-bred Hartley guinea pigs. J Exp Med. 1971 Aug 1;134(2):471–481. doi: 10.1084/jem.134.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyse E. A., Flaherty L., Stockert E., Old L. J. Histoincompatibility attributable to genes near H-2 that are not revealed by hemagglutination or cytotoxicity tests. Transplantation. 1972 Apr;13(4):431–432. doi: 10.1097/00007890-197204000-00013. [DOI] [PubMed] [Google Scholar]
  5. Dutton R. W., Mishell R. I. Cell populations and cell proliferation in the in vitro response of normal mouse spleen to heterologous erythrocytes. Analysis by the hot pulse technique. J Exp Med. 1967 Sep 1;126(3):443–454. doi: 10.1084/jem.126.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EDELMAN G. M., HEREMANS J. F., HEREMANS M. T., KUNKEL H. G. Immunological studies of human gamma-globulin. Relation of the precipitin lines of whole gamma-globulin to those of the fragments produced by papain. J Exp Med. 1960 Jul 1;112:203–223. doi: 10.1084/jem.112.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellman L., Green I., Martin W. J., Benacerraf B. Linkage between the poly-L-lysine gene and the locus controlling the major histocompatibility antigens in strain 2 guinea pigs. Proc Natl Acad Sci U S A. 1970 Jun;66(2):322–328. doi: 10.1073/pnas.66.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foerster J., Green I., Lamelin J. P., Benacerraf B. Transfer of responsiveness to hapten conjugates of poly-L-lysine and of a copolymer of L-glutamic acid and L-lysine to lethally irradiated nonresponder guinea pigs by bone marrow or lymph node and spleen cells from responder guinea pigs. J Exp Med. 1969 Nov 1;130(5):1107–1122. doi: 10.1084/jem.130.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KANTOR F. S., OJEDA A., BENCARERRAF B. Studies on artifical antigens. I. Antigenicity of DNP-polylysine and DNP copolymer of lysine and glutamic acid in guinea pigs. J Exp Med. 1963 Jan 1;117:55–69. doi: 10.1084/jem.117.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kasakura S. Blastogenesis of lymphocytes induced by PPD-primed X-irradiated autologous lymphocytes. J Immunol. 1969 Nov;103(5):1078–1084. [PubMed] [Google Scholar]
  11. Katz D. H., Hamaoka T., Benacerraf B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J Exp Med. 1973 Jun 1;137(6):1405–1418. doi: 10.1084/jem.137.6.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kindred B., Shreffler D. C. H-2 dependence of co-operation between T and B cells in vivo. J Immunol. 1972 Nov;109(5):940–943. [PubMed] [Google Scholar]
  13. Klein J., Shreffler D. C. The H-2 model for the major histocompatibility systems. Transplant Rev. 1971;6:3–29. doi: 10.1111/j.1600-065x.1971.tb00457.x. [DOI] [PubMed] [Google Scholar]
  14. OETTGEN H. F., BINAGHI R. A., BENACERRAF B. HEXOSE CONTENT OF GUINEA PIG GAMMA-1 AND GAMMA-2 IMMUNOGLOBULINS. Proc Soc Exp Biol Med. 1965 Feb;118:336–342. [PubMed] [Google Scholar]
  15. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shevach E. M., Green I., Paul W. E. Alloantiserum-induced inhibition of immune response gene product function. II. Genetic analysis of target antigens. J Exp Med. 1974 Mar 1;139(3):679–695. doi: 10.1084/jem.139.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shevach E. M., Paul W. E., Green I. Histocompatibility-linked immune response gene function in guinea pigs. Specific inhibition of antigen-induced lymphocyte proliferation by alloantisera. J Exp Med. 1972 Nov 1;136(5):1207–1221. doi: 10.1084/jem.136.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shevach E. M., Rosenthal A. S. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J Exp Med. 1973 Nov 1;138(5):1213–1229. doi: 10.1084/jem.138.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tyan M. L., McDevitt H. O., Herzenberg L. A. Genetic control of the antibody response to a synthetic polypeptide: transfer of response with spleen cells or lymphoid precursors. Transplant Proc. 1969 Mar;1(1):548–550. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES