Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Aug 1;140(2):313–332. doi: 10.1084/jem.140.2.313

PHYSIOCHEMICAL AND BIOLOGICAL PROPERTIES OF THE MAJOR BASIC PROTEIN FROM GUINEA PIG EOSINOPHIL GRANULES

Gerald J Gleich 1, David A Loegering 1, Friedrich Kueppers 1, Satya P Bajaj 1, Kenneth G Mann 1
PMCID: PMC2139602  PMID: 4846413

Abstract

Guinea pig eosinophil granules are characterized by the presence of a basic protein of low molecular weight which accounts for greater than 50% of granule protein. This protein, termed the major basic protein (MBP), readily aggregates and becomes insoluble, and the formation of aggregates is dependent on the establishment of disulfide bonds. Analysis of concentrated preparations of MBP often revealed a series of bands which were multiples of a monomeric unit with a mol wt of approximately 11,000. Analysis of reduced and alkylated MBP on a 10% agarose column equilibrated with 6 M guanidinium chloride revealed a single polypeptide chain with a mol wt of 10,800. Amino acid analysis of the protein revealed the presence of 13% arginine, consistent with the basic character of the molecule. Four residues of tryptophan, were present, indicating that MBP is not a histone. The MBP did not increase vascular permeability when injected into the skin of guinea pigs, nor did it antagonize the effect of histamine and bradykinin in the skin. MBP also did not contract the isolated guinea pig ileum and when mixed with histamine or bradykinin did not inhibit their activity on the gut. MBP had only weak, if any, antihistaminic activity. MBP possessed weak bactericidal activity when compared to histone and then only with one strain of E. coli. MBP precipitated DNA, neutralized heparin, and activated papain. On a molar basis MBP was more active than cysteine in activating papain. These results do not point to any unique biological activity associated with MBP other than those expected of a protein as basic as it is and one which possesses reactive sulfhydryl groups. Possible functions of eosinophils based on the properties of the MBP are discussed.

Full Text

The Full Text of this article is available as a PDF (1,022.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARCHER G. T., HIRSCH J. G. ISOLATION OF GRANULES FROM EOSINOPHIL LEUCOCYTES AND STUDY OF THEIR ENZYME CONTENT. J Exp Med. 1963 Aug 1;118:277–286. doi: 10.1084/jem.118.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARCHER R. K., BROOME J. Bradykinin and eosinophils. Nature. 1963 Jun 1;198:893–894. doi: 10.1038/198893a0. [DOI] [PubMed] [Google Scholar]
  3. ARCHER R. K. Studies with eosinophil leucocytes isolated from the blood of the horse. Br J Haematol. 1960 Jul;6:229–241. doi: 10.1111/j.1365-2141.1960.tb06238.x. [DOI] [PubMed] [Google Scholar]
  4. BOSWORTH N., ARCHER G. T. A phagocytosis-promoting substance present in eosinophils. Aust J Exp Biol Med Sci. 1962 Aug;40:277–281. doi: 10.1038/icb.1962.31. [DOI] [PubMed] [Google Scholar]
  5. Babul J., Stellwagen E. Measurement of protein concentration with interferences optics. Anal Biochem. 1969 Apr 4;28(1):216–221. doi: 10.1016/0003-2697(69)90172-9. [DOI] [PubMed] [Google Scholar]
  6. Broome J. D., Jeng M. W. Promotion of replication in lymphoid cells by specific thiols and disulfides in vitro. Effects on mouse lymphoma cells in comparison with splenic lymphocytes. J Exp Med. 1973 Sep 1;138(3):574–592. doi: 10.1084/jem.138.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CODE C. F., MCINTIRE F. C. Quantitative determination of histamine. Methods Biochem Anal. 1956;3:49–95. doi: 10.1002/9780470110195.ch3. [DOI] [PubMed] [Google Scholar]
  8. Chen C., Hirsch J. G. The effects of mercaptoethanol and of peritoneal macrophages on the antibody-forming capacity of nonadherent mouse spleen cells in vitro. J Exp Med. 1972 Sep 1;136(3):604–617. doi: 10.1084/jem.136.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen S., Ward P. A. In vitro and in vivo activity of a lymphocyte and immune complex-dependent chemotactic factor for eosinophils. J Exp Med. 1971 Jan 1;133(1):133–146. doi: 10.1084/jem.133.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colley D. G. Eosinophils and immune mechanisms. Eosinophil stimulation promoter (ESP): a lymphokine induced by specific antigen or phytohemagglutinin. J Immunol. 1973 May;110(5):1419–1423. [PubMed] [Google Scholar]
  11. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  12. Gessner T. P., Himmelhoch R., Shelton E. Partial characterization of the protein components of eosinophil granules isolated from guinea pig exudates. Arch Biochem Biophys. 1973 Jun;156(2):383–389. doi: 10.1016/0003-9861(73)90286-5. [DOI] [PubMed] [Google Scholar]
  13. Gleich G. J., Loegering D. A., Maldonado J. E. Identification of a major basic protein in guinea pig eosinophil granules. J Exp Med. 1973 Jun 1;137(6):1459–1471. doi: 10.1084/jem.137.6.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gleich G. J., Loegering D. Selective stimulation and purification of eosinophils and neutrophils from guinea pig peritoneal fluids. J Lab Clin Med. 1973 Sep;82(3):522–528. [PubMed] [Google Scholar]
  15. HIRSCH J. G. Bactericidal action of histone. J Exp Med. 1958 Dec 1;108(6):925–944. doi: 10.1084/jem.108.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. JANOFF A., ZWEIFACH B. W. PRODUCTION OF INFLAMMATORY CHANGES IN THE MICROCIRCULATION BY CATIONIC PROTEINS EXTRACTED FROM LYSOSOMES. J Exp Med. 1964 Nov 1;120:747–764. doi: 10.1084/jem.120.5.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LEVINE B. B. STUDIES ON THE IMMUNOLOGICAL MECHANISMS OF PENICILLIN ALLERGY. I. ANTIGENIC SPECIFICITIES OF GUINEA-PIG SKIN SENSITIZING RABBIT ANTI-BENZYLPENICILLIN ANTIBODIES. Immunology. 1964 Sep;7:527–541. [PMC free article] [PubMed] [Google Scholar]
  18. LITT M. Studies in experimental eosinophilia. V. Eosinophils in lynph nodes of guinea pigs following primary antigenic stimulation. Am J Pathol. 1963 May;42:529–549. [PMC free article] [PubMed] [Google Scholar]
  19. Liu T. Y., Chang Y. H. Hydrolysis of proteins with p-toluenesulfonic acid. Determination of tryptophan. J Biol Chem. 1971 May 10;246(9):2842–2848. [PubMed] [Google Scholar]
  20. MILES A. A., MILES E. M. Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol. 1952 Oct;118(2):228–257. doi: 10.1113/jphysiol.1952.sp004789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MUSCHEL L. H., TREFFERS H. P. Quantitative studies on the bactericidal actions of serum and complement. I. A rapid photometric growth assay for bactericidal activity. J Immunol. 1956 Jan;76(1):1–10. [PubMed] [Google Scholar]
  22. Mann K. G., Fish W. W. Protein polypeptide chain molecular weights by gel chromatography in guanidinium chloride. Methods Enzymol. 1972;26:28–42. doi: 10.1016/s0076-6879(72)26004-9. [DOI] [PubMed] [Google Scholar]
  23. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Osserman E. F., Klockars M., Halper J., Fischel R. E. Effects of lysozyme on normal and transformed mammalian cells. Nature. 1973 Jun 8;243(5406):331–335. doi: 10.1038/243331a0. [DOI] [PubMed] [Google Scholar]
  25. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  26. Ranadive N. S., Cochrane C. G. Isolation and characterization of permeability factors from rabbit neutrophils. J Exp Med. 1968 Oct 1;128(4):605–622. doi: 10.1084/jem.128.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saba H. I., Roberts H. R., Herion J. C. The anticoagulant activity of lysosomal cationic proteins from polymorphonuclear leukocytes. J Clin Invest. 1967 Apr;46(4):580–589. doi: 10.1172/JCI105559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seegers W., Janoff A. Mediators of inflammation in leukocyte lysosomes. VI. Partial purification and characterization of a mast cell-rupturing component. J Exp Med. 1966 Nov 1;124(5):833–849. doi: 10.1084/jem.124.5.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. VERCAUTEREN R., PEETERS G. On the presence of an antihistaminicum in isolated eosinophilic granulocytes. Arch Int Pharmacodyn Ther. 1952 Feb;89(1):10–14. [PubMed] [Google Scholar]
  30. VERCAUTEREN R. The properties of the isolated granules from blood eosinophiles. Enzymologia. 1953 Apr 15;16(1):1–13. [PubMed] [Google Scholar]
  31. Zeya H. I., Spitznagel J. K. Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science. 1966 Nov 25;154(3752):1049–1051. doi: 10.1126/science.154.3752.1049. [DOI] [PubMed] [Google Scholar]
  32. Zeya H. I., Spitznagel J. K. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity. J Exp Med. 1968 May 1;127(5):927–941. doi: 10.1084/jem.127.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zeya H. I., Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966 Feb;91(2):755–762. doi: 10.1128/jb.91.2.755-762.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES