Abstract
Cells binding DNP groups conjugated to fluoresceinated mouse gamma globulin (FDNP-MGG) were isolated from spleens of unprimed mice using a fluorescence-activated cell sorter (FACS). The isolated cells were specifically enriched at least 100-fold for anti-DNP precursor activity in an adoptive transfer assay as compared to unfractionated spleen. The fraction depleted of binding cells, although depleted of anti-DNP precursor activity, responded as well as unfractionated spleen when assayed for anticarrier (keyhole limpet hemocyanin [KLH]) precursor activity. High avidity binding cells were stained using low concentrations of FDNP-MGG. Medium and low avidity binding cells were stained using high concentrations of FDNP-MGG in the presence of free hapten which selectively blocked staining of the high avidity binding cells. Cells were supplemented with an excess of carrier-primed (KLH), nylon-purified splenic T cells and transferred to irradiated recipients. DNP-KLH was given at transfer and 5 days later. The anti-DNP plaque-forming cell (DNP-PFC) response and the avidities of the DNP-PFC in the irradiated recipients were measured by hapten inhibition of direct PFC plaque formation 12 days after transfer. At this time, very few indirect PFC were found. There was a positive correlation between the avidity of the DNP-binding cells and the avidity of the anti-DNP antibody secreted by their progeny. High avidity DNP-binding cells gave rise to predominantly high avidity anti-DNP-PFC. Medium and low avidity binding cells gave rise to medium and low avidity DNP-PFC.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ada G. L., Byrt P. Specific inactivation of antigen-reactive cells with 125I-labelled antigen. Nature. 1969 Jun 28;222(5200):1291–1292. doi: 10.1038/2221291a0. [DOI] [PubMed] [Google Scholar]
- Andersson B. Studies on antibody affinity at the cellular level. Correlation between binding properties of secreted antibody and cellular receptor for antigen on immunological memory cells. J Exp Med. 1972 Feb 1;135(2):312–322. doi: 10.1084/jem.135.2.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersson B. Studies on the regulation of avidity at the level of the single antibody-forming cell. The effect of antigen dose and time after immunization. J Exp Med. 1970 Jul 1;132(1):77–88. doi: 10.1084/jem.132.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avrameas S., Taudou B., Chuilon S. Glutaraldehyde, cyanuric chloride and tetrazotized O-dianisidine as coupling reagents in the passive hemagglutination test. Immunochemistry. 1969 Jan;6(1):67–76. doi: 10.1016/0019-2791(69)90179-7. [DOI] [PubMed] [Google Scholar]
- BROWN G. C., AINSLIE J. D. Relationship between serum antibodies and subclinical infections with poliomyelitis virus. J Exp Med. 1951 Mar;93(3):197–205. doi: 10.1084/jem.93.3.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. A., Hulett H. R., Sweet R. G., Herzenberg L. A. Fluorescence activated cell sorting. Rev Sci Instrum. 1972 Mar;43(3):404–409. doi: 10.1063/1.1685647. [DOI] [PubMed] [Google Scholar]
- Cebra J. J., Goldstein G. Chromatographic purification of tetramethylrhodamine-immune globulin conjugates and their use in the cellular localization of rabbit gamma-globulin polypeptide chains. J Immunol. 1965 Aug;95(2):230–245. [PubMed] [Google Scholar]
- Cheers C., Miller J. F. Cell-to-cell interaction in the immune response. IX. Regulation of hepten-specific antibody class by carrier priming. J Exp Med. 1972 Dec 1;136(6):1661–1665. doi: 10.1084/jem.136.6.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham A. J., Sercarz E. E. The asynchronous development of immunological memory in helper (T) and precursor (B) cell lines. Eur J Immunol. 1971 Dec;1(6):413–421. doi: 10.1002/eji.1830010602. [DOI] [PubMed] [Google Scholar]
- Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
- DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davie J. M., Paul W. E. Receptors on immunocompetent cells. IV. Direct measurement of avidity of cell receptors and cooperative binding of multivalent ligands. J Exp Med. 1972 Mar 1;135(3):643–659. doi: 10.1084/jem.135.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davie J. M., Rosenthal A. S., Paul W. E. Receptors on immunocompetent cells. 3. Specificity and nature of receptors on dinitrophenylated guinea pig albumin- 125 I-binding cells of immunized guinea pigs. J Exp Med. 1971 Aug 1;134(2):517–531. doi: 10.1084/jem.134.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
- EISEN H. N., KARUSH F. The interaction of purified antibody with homologous hapten; antibody valence and binding constant. J Am Chem Soc. 1949 Jan;71(1):363–363. doi: 10.1021/ja01169a505. [DOI] [PubMed] [Google Scholar]
- EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
- Henry C., Kimura J., Wofsy L. Cell separation on affinity columns: the isolation of immunospecific precursor cells from unimmunized mice (lactoside hapten-lymphocyte receptors-immunology). Proc Natl Acad Sci U S A. 1972 Jan;69(1):34–36. doi: 10.1073/pnas.69.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inman J. K., Merchant B., Claflin L., Tacey S. E. Coupling of large haptens to proteins and cell surfaces: preparation of stable, optimally sensitized erythrocytes for hapten-specific, hemolytic plaque assays. Immunochemistry. 1973 Mar;10(3):165–174. doi: 10.1016/0019-2791(73)90005-0. [DOI] [PubMed] [Google Scholar]
- Julius M. H., Masuda T., Herzenberg L. A. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1934–1938. doi: 10.1073/pnas.69.7.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten immune responses. I. Enhancement of primary and secondary anti-hapten antibody responses by carrier preimmunization. J Exp Med. 1970 Aug 1;132(2):261–282. doi: 10.1084/jem.132.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCKINNEY R. M., SPILLANE J. T., PEARCE G. W. FACTORS AFFECTING THE RATE OF REACTION OF FLUORESCEIN ISOTHIOCYANATE WITH SERUM PROTEINS. J Immunol. 1964 Aug;93:232–242. [PubMed] [Google Scholar]
- North J. R., Askonas B. A. Analysis of affinity of monoclonal antibody responses by inhibition of plaque-forming cells. Eur J Immunol. 1974 May;4(5):361–366. doi: 10.1002/eji.1830040511. [DOI] [PubMed] [Google Scholar]
- Pasanen V. J., Mäkelä O. Effect of the number of haptens coupled to each erythrocyte on haemolytic plaque formation. Immunology. 1969 Mar;16(3):399–407. [PMC free article] [PubMed] [Google Scholar]
- Rittenberg M. B., Pratt K. L. Antitrinitrophenyl (TNP) plaque assay. Primary response of Balb/c mice to soluble and particulate immunogen. Proc Soc Exp Biol Med. 1969 Nov;132(2):575–581. doi: 10.3181/00379727-132-34264. [DOI] [PubMed] [Google Scholar]
- Rutishauser U., D'Eustachio P., Edelman G. M. Immunological functions of lymphocytes fractionated with antigen-derivatized fibers. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3894–3898. doi: 10.1073/pnas.70.12.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
- Wigzell H., Mäkelä O. Separation of normal and immune lymphoid cells by antigen-coated coated columns. Antigen-binding characteristics of membrane antibodies as analyzed by hapten-protein antigens. J Exp Med. 1970 Jul 1;132(1):110–126. doi: 10.1084/jem.132.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood B. T., Thompson S. H., Goldstein G. Fluorescent antibody staining. 3. Preparation of fluorescein-isothiocyanate-labeled antibodies. J Immunol. 1965 Aug;95(2):225–229. [PubMed] [Google Scholar]
- Yamada H., Yamada A., Hollander V. P. 2,4-dinitrophenyl-hapten specific hemolytic plaque-in-gel formation by mouse myeloma (MOPC-315) cells. J Immunol. 1970 Jan;104(1):251–255. [PubMed] [Google Scholar]