Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 May 1;139(5):1175–1188. doi: 10.1084/jem.139.5.1175

RECEPTORS FOR AGGREGATED IgG ON MOUSE LYMPHOCYTES

THEIR PRESENCE ON THYMOCYTES, THYMUS-DERIVED, AND BONE MARROW-DERIVED LYMPHOCYTES

Clark L Anderson 1, Howard M Grey 1
PMCID: PMC2139647  PMID: 4132993

Abstract

An autoradiographic binding assay employing 125I-labeled heat-aggregated mouse IgG2b myeloma protein (MOPC 141) was used to demonstrate receptors for IgG on 20–45% of Balb/c thymocytes and on 70–80% of splenocytes. Binding could also be shown with heat or BDB aggregates of another IgG2b (MOPC 195), with IgG1 and with human γ-globulin, but not with aggregated chicken γ-globulin, IgA, BSA, nor with aggregated Fab fragments of IgG2b. Optimum binding was obtained at 37°C. Detection of binding was dependent upon aggregate size with complexes of more than 100 IgG molecules being optimal, aggregates of 6–25 detecting splenocytes but not thymocytes, and aggregates of less than 6 binding to a negligible extent. Comparison of grain counts on various cell types showed mastocytoma cells (P815) and macrophages averaging 40–50 grains/cell/day, allogeneically activated thymocytes 20–30, splenocytes 2–3, L5178 lymphoma cells 1, and positive thymocytes 0.6 grains/cell/day. Double labeling experiments for surface Ig, θ-antigen, and agg IgG receptor on mouse spleen cells indicated that a relatively high density of receptor was present on about 80% of B cells, 30% of T cells, and 60% of SIg-, θ-, null cells.

Full Text

The Full Text of this article is available as a PDF (767.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYDEN S. V. CYTOPHILIC ANTIBODY IN GUINEA-PIGS WITH DELAYED-TYPE HYPERSENSITIVITY. Immunology. 1964 Jul;7:474–483. [PMC free article] [PubMed] [Google Scholar]
  2. BOYDEN S. V., SORKIN E. The adsorption of antigen by spleen cells previously treated with antiserum in vitro. Immunology. 1960 Jul;3:272–283. [PMC free article] [PubMed] [Google Scholar]
  3. Basten A., Miller J. F., Sprent J., Pye J. A receptor for antibody on B lymphocytes. I. Method of detection and functional significance. J Exp Med. 1972 Mar 1;135(3):610–626. doi: 10.1084/jem.135.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basten A., Warner N. L., Mandel T. A receptor for antibody on B lymphocytes. II. Immunochemical and electron microscopy characteristics. J Exp Med. 1972 Mar 1;135(3):627–642. doi: 10.1084/jem.135.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bentwich Z., Douglas S. D., Siegal F. P., Kunkel H. G. Human lymphocyte-sheep erythrocyte rosette formation: some characteristics of the interaction. Clin Immunol Immunopathol. 1973 Jul;1(4):511–522. doi: 10.1016/0090-1229(73)90007-x. [DOI] [PubMed] [Google Scholar]
  6. Cerottini J. C., Nordin A. A., Brunner K. T. In vitro cytotoxic activity of thymus cells sensitized to alloantigens. Nature. 1970 Jul 4;227(5253):72–73. doi: 10.1038/227072a0. [DOI] [PubMed] [Google Scholar]
  7. Cerottini J. C., Unanue E. R. Genetic control of the immune response of mice to hemocyanin. I. Th role of macrophages. J Immunol. 1971 Mar;106(3):732–739. [PubMed] [Google Scholar]
  8. Cline M. J., Warner N. L. Immunoglobulin receptors on a mouse mast cell tumor. J Immunol. 1972 Feb;108(2):339–345. [PubMed] [Google Scholar]
  9. Dickler H. B., Kunkel H. G. Interaction of aggregated -globulin with B lymphocytes. J Exp Med. 1972 Jul 1;136(1):191–196. doi: 10.1084/jem.136.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dickler H. B., Siegal F. P., Bentwich Z. H., Kunkel H. G. Lymphocyte binding of aggregated IgG and surface Ig staining in chronic lymphocytic leukaemia. Clin Exp Immunol. 1973 May;14(1):97–106. [PMC free article] [PubMed] [Google Scholar]
  11. Greenberg A. H., Shen L. A class of specific cytotoxic cells demonstrated in vitro by arming with antigen-antibody complexes. Nat New Biol. 1973 Oct 31;245(148):282–285. doi: 10.1038/newbio245282a0. [DOI] [PubMed] [Google Scholar]
  12. Greenberg A. H., Shen L., Roitt I. M. Characterization of the antibody-dependent cytotoxic cell. A non-phagocytic monocyte? Clin Exp Immunol. 1973 Oct;15(2):251–259. [PMC free article] [PubMed] [Google Scholar]
  13. Grey H. M., Hirst J. W., Cohn M. A new mouse immunoglobulin: IgG3. J Exp Med. 1971 Feb 1;133(2):289–304. doi: 10.1084/jem.133.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grey H. M., Kubo R. T., Cerottini J. C. Thymus-derived (T) cell immunoglobulins. Presence of a receptor site for IgG and absence of large amounts of "buried" Ig determinants on T cells. J Exp Med. 1972 Nov 1;136(5):1323–1328. doi: 10.1084/jem.136.5.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris A. W., Bankhurst A. D., Mason S., Warner N. L. Differentiated functions expressed by cultured mouse lymphoma cells. II. Theta antigen, surface immunoglobulin and a receptor for antibody on cells of a thymoma cell line. J Immunol. 1973 Feb;110(2):431–438. [PubMed] [Google Scholar]
  16. Huber H., Fudenberg H. H. Receptor sites of human monocytes for IgG. Int Arch Allergy Appl Immunol. 1968;34(1):18–31. doi: 10.1159/000230091. [DOI] [PubMed] [Google Scholar]
  17. ISHIZAKA K., ISHIZAKA T. Biologic activity of aggregated gamma-globulin. II. A study of various methods for aggregation and species differences. J Immunol. 1960 Aug;85:163–171. [PubMed] [Google Scholar]
  18. Klinman N. R., Taylor R. B. General methods for the study of cells and serum during the immune response: the response to dinitrophenyl in mice. Clin Exp Immunol. 1969 Apr;4(4):473–487. [PMC free article] [PubMed] [Google Scholar]
  19. Lay W. H., Nussenzweig V. Receptors for complement of leukocytes. J Exp Med. 1968 Nov 1;128(5):991–1009. doi: 10.1084/jem.128.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Orr K. B., Paraskevas F. Cell surface associated gamma globulin in lymphocytes. V. Detection of early cytophilic complexes reacting with T- and B-lymphocytes. J Immunol. 1973 Feb;110(2):456–464. [PubMed] [Google Scholar]
  21. Ross G. D., Rabellino E. M., Polley M. J., Grey H. M. Combined studies of complement receptor and surface immunoglobulin-bearing cells and sheep erythrocyte rosette-forming cells in normal and leukemic human lymphocytes. J Clin Invest. 1973 Feb;52(2):377–385. doi: 10.1172/JCI107194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shevach E., Herberman R., Lieberman R., Frank M. M., Green I. Receptors for immunoglobulin and complement on mouse leukemias and lymphomas. J Immunol. 1972 Feb;108(2):325–328. [PubMed] [Google Scholar]
  23. Sprent J., Miller J. F. Activation of thymus cells by histocompatibility antigens. Nat New Biol. 1971 Sep 15;234(50):195–198. doi: 10.1038/newbio234195a0. [DOI] [PubMed] [Google Scholar]
  24. Tigelaar R. E., Vaz N. M., Ovary Z. Immunoglobulin receptors on mouse mast cells. J Immunol. 1971 Mar;106(3):661–672. [PubMed] [Google Scholar]
  25. Tonder O., Thunold S. Receptors for immunoglobulin Fc in human malignant tissues. Scand J Immunol. 1973;2(3):207–215. doi: 10.1111/j.1365-3083.1973.tb02031.x. [DOI] [PubMed] [Google Scholar]
  26. Webb S. R., Cooper M. D. T cells can bind antigen via cytophilic IgM antibody made by B cells. J Immunol. 1973 Jul;111(1):275–277. [PubMed] [Google Scholar]
  27. Yoshida T. O., Andersson B. Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes. Scand J Immunol. 1972;1(4):401–408. doi: 10.1111/j.1365-3083.1972.tb03306.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES