Abstract
Incubation of human leukocytes with dehydroascorbate (DHA) results in an increase in their reduced ascorbate (AA) content and hexose monophosphate shunt (HMS) activity, independent of oxygen supply. Incubation with AA induces these changes only in the presence of oxygen. The increase in HMS activity observed as cell AA increases by 1 µmol is the same during incubation with either DHA or AA. We propose that human leukocytes take up ascorbate as DHA (AA after oxidation to DHA) and reduce it promptly to AA, and that HMS stimulation upon incubation with either AA or DHA is a result of DHA reduction.
Full Text
The Full Text of this article is available as a PDF (466.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. C., Stjernholm R. L., Steele R. H. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun. 1972 May 26;47(4):679–684. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
- Baehner R. L., Gilman N., Karnovsky M. L. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J Clin Invest. 1970 Apr;49(4):692–700. doi: 10.1172/JCI106281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baehner R. L., Nathan D. G., Karnovsky M. L. Correction of metabolic deficiencies in the leukocytes of patients with chronic granulomatous disease. J Clin Invest. 1970 May;49(5):865–870. doi: 10.1172/JCI106305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper M. R., McCall C. E., Dechatelet L. R. Stimulation of leukocyte hexose monophosphate shunt activity by ascorbic Acid. Infect Immun. 1971 Jun;3(6):851–853. doi: 10.1128/iai.3.6.851-853.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson W. D., Tanaka K. R. Continuous measurement of pentose phosphate pathway activity in erythrocytes. An ionization chamber method. J Lab Clin Med. 1969 Jan;73(1):173–180. [PubMed] [Google Scholar]
- Dayton P. G., Snell M. M., Perel J. M. Ascorbic and dehydroascorbic acids in guinea pigs and rats. J Nutr. 1966 Mar;88(3):338–344. doi: 10.1093/jn/88.3.338. [DOI] [PubMed] [Google Scholar]
- Green R. C., O'Brien P. J. The involvement of semidehydroascorbate reductase in the oxidation of NADH by lipid peroxide in mitochondria and microsomes. Biochim Biophys Acta. 1973 Feb 15;293(2):334–342. doi: 10.1016/0005-2744(73)90341-0. [DOI] [PubMed] [Google Scholar]
- HUGHES R. E. REDUCTION OF DEHYDROASORBIC ACID BY ANIMAL TISSUES. Nature. 1964 Sep 5;203:1068–1069. doi: 10.1038/2031068a0. [DOI] [PubMed] [Google Scholar]
- Hara T., Minakami S. On functional role of cytochrome b5. II. NADH-linked ascorbate radical reductase activity in microsomes. J Biochem. 1971 Feb;69(2):325–330. doi: 10.1093/oxfordjournals.jbchem.a129470. [DOI] [PubMed] [Google Scholar]
- Hornig D., Weber F., Wiss O. Autoradiographic distribution of (1- 14 C) ascorbic acid and (1- 14 C) dehydroascorbic acid in male guinea pigs after intravenous injection. Int J Vitam Nutr Res. 1972;42(2):223–241. [PubMed] [Google Scholar]
- Hornig D., Weber F., Wiss O. Uptake and release of [I-14C]ascorbic acid and [I-14C]dehydroascorbic acid by erythrocytes of guinea pigs. Clin Chim Acta. 1971 Jan;31(1):25–35. doi: 10.1016/0009-8981(71)90358-5. [DOI] [PubMed] [Google Scholar]
- Jacob H. S., Jandl J. H. Effects of sulfhydryl inhibition on red blood cells. 3. Glutathione in the regulation of the hexose monophosphate pathway. J Biol Chem. 1966 Sep 25;241(18):4243–4250. [PubMed] [Google Scholar]
- KERSTEN W., SCHMIDT H., STAUDINGER H. Stoffwechsel der Nebennierenrinde und Biosynthese der Corticosteroide; Ascorbinsäure und Wasserstofftransport. VII. Biochem Z. 1955;326(7):469–473. [PubMed] [Google Scholar]
- KINOSHITA J. H. SELECTED TOPICS IN OPHTHALMIC BIOCHEMISTRY. Arch Ophthalmol. 1964 Oct;72:554–572. doi: 10.1001/archopht.1964.00970020554022. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Hamon C. B. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 1972 Aug;12(2):170–196. [PubMed] [Google Scholar]
- MARTIN G. R. Studies on the tissue distribution of ascorbic acid. Ann N Y Acad Sci. 1961 Apr 21;92:141–147. doi: 10.1111/j.1749-6632.1961.tb46113.x. [DOI] [PubMed] [Google Scholar]
- Mohanram M., Srikantia S. G. Leucocytes and ascorbic acid uptake. Clin Sci. 1967 Apr;32(2):215–222. [PubMed] [Google Scholar]
- PATTERSON J. W., MASTIN D. W. Some effects of dehydroascorbic acid on the central nervous system. Am J Physiol. 1951 Oct;167(1):119–126. doi: 10.1152/ajplegacy.1951.167.1.119. [DOI] [PubMed] [Google Scholar]
- Reed P. W. Glutathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes. J Biol Chem. 1969 May 10;244(9):2459–2464. [PubMed] [Google Scholar]
- STAUDINGER H., WEIS W. REINDATSTELLUNG UND KRISTALLISATION VON DEHYDRO-L-ASCORBINSAEURE. Hoppe Seylers Z Physiol Chem. 1964;337:284–285. doi: 10.1515/bchm2.1964.337.1.284. [DOI] [PubMed] [Google Scholar]