Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Jun 1;139(6):1621–1627. doi: 10.1084/jem.139.6.1621

ANTIGENIC DIFFERENCES BETWEEN HEMOPOIETIC STEM CELLS AND MYELOID PROGENITORS

Gerrit J Van den Engh 1, Edward S Golub 1
PMCID: PMC2139673  PMID: 4133617

Abstract

Bone marrow contains pluripotent stem cells which give rise to colonies when injected into irradiated syngenic hosts as well as more differentiated progenitor cells of the myeloid cell which are able to form colonies in vitro. Antisera against brain is known to contain antistem cell antibody. The present experiments were designed to determine if the myeloid progenitor cell still expresses the stem cell antigen. Bone marrow cells were treated with antibrain antiserum plus complement and then survival of stem cells was determined by injection into irradiated hosts. Survival of myeloid progenitor cells was determined by culturing the cells in vitro. It was found that stem cells were eliminated by the antiserum but that myeloid progenitors were not. Inefficient in vitro lysis was ruled out as the reason for this difference since in vitro colonies were not reduced when the cells were treated with anti-immunoglobulin or after passage through an irradiated host. In the differentiation from stem cell to myeloid progenitor there is an associated surface antigen change.

Full Text

The Full Text of this article is available as a PDF (390.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyse E. A., Old L. J., Scheid M. Selective gene action in the specification of cell surface structure. Am J Pathol. 1971 Nov;65(2):439–450. [PMC free article] [PubMed] [Google Scholar]
  2. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  3. Bradley T. R., Telfer P. A., Fry P. The effect of erythrocytes on mouse bone marrow colony development in vitro. Blood. 1971 Sep;38(3):353–359. [PubMed] [Google Scholar]
  4. Golub E. S. Brain associated erythrocyte antigen: an antigen shared by brain and erythrocytes. Exp Hematol. 1973;1(2):105–109. [PubMed] [Google Scholar]
  5. Golub E. S. Brain-associated stem cell antigen: an antigen shared by brain and hemopoietic stem cells. J Exp Med. 1972 Aug 1;136(2):369–374. doi: 10.1084/jem.136.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Golub E. S. Brain-associated theta antigen: reactivity of rabbit anti-mouse brain with mouse lymphoid cells. Cell Immunol. 1971 Aug;2(4):353–361. doi: 10.1016/0008-8749(71)90070-0. [DOI] [PubMed] [Google Scholar]
  7. Golub E. S. The distribution of brain-associated theta antigen cross-reactive with mouse in the brain of other species. J Immunol. 1972 Jul;109(1):168–170. [PubMed] [Google Scholar]
  8. Golub E. S., Weigle W. O. Studies on the induction of immunologic unresponsiveness. II. Kinetics. J Immunol. 1967 Sep;99(3):624–628. [PubMed] [Google Scholar]
  9. Haskill J. S., McNeill T. A., Moore M. A. Density distribution analysis of in vivo and in vitro colony forming cells in bone marrow. J Cell Physiol. 1970 Apr;75(2):167–179. doi: 10.1002/jcp.1040750206. [DOI] [PubMed] [Google Scholar]
  10. Iscove N. N., Till J. E., McCulloch E. A. The proliferative states of mouse granulopoietic progenitor cells. Proc Soc Exp Biol Med. 1970 May;134(1):33–36. doi: 10.3181/00379727-134-34721. [DOI] [PubMed] [Google Scholar]
  11. Micklem H. S., Ford C. E., Evans E. P., Gray J. Interrelationships of myeloid and lymphoid cells: studies with chromosome-marked cells transfused into lethally irradiated mice. Proc R Soc Lond B Biol Sci. 1966 Jul 19;165(998):78–102. doi: 10.1098/rspb.1966.0059. [DOI] [PubMed] [Google Scholar]
  12. Pluznik D. H., Sachs L. The cloning of normal "mast" cells in tissue culture. J Cell Physiol. 1965 Dec;66(3):319–324. doi: 10.1002/jcp.1030660309. [DOI] [PubMed] [Google Scholar]
  13. Scheid M. P., Hoffmann M. K., Komuro K., Hämmerling U., Abbott J., Boyse E. A., Cohen G. H., Hooper J. A., Schulof R. S., Goldstein A. L. Differentiation of T cells induced by preparations from thymus and by nonthymic agents. J Exp Med. 1973 Oct 1;138(4):1027–1032. doi: 10.1084/jem.138.4.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  15. Worton R. G., McCulloch E. A., Till J. E. Physical separation of hemopoietic stem cells from cells forming colonies in culture. J Cell Physiol. 1969 Oct;74(2):171–182. doi: 10.1002/jcp.1040740209. [DOI] [PubMed] [Google Scholar]
  16. Wu A. M., Till J. E., Siminovitch L., McCulloch E. A. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol. 1967 Apr;69(2):177–184. doi: 10.1002/jcp.1040690208. [DOI] [PubMed] [Google Scholar]
  17. Wu A. M., Till J. E., Siminovitch L., McCulloch E. A. Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med. 1968 Mar 1;127(3):455–464. doi: 10.1084/jem.127.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES