Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Jun 1;139(6):1415–1430. doi: 10.1084/jem.139.6.1415

THE MEDIATOR OF CELLULAR IMMUNITY

VII. LOCALIZATION OF SENSITIZED LYMPHOCYTES IN INFLAMMATORY EXUDATES

D D McGregor 1, Pamela S Logie 1
PMCID: PMC2139683  PMID: 4208417

Abstract

Peritoneal exudates induced in rats infected with Listeria monocytogenes contain sensitized lymphocytes which can protect normal recipients against a Listeria challenge. The protective cells arise in lymphoid tissue remote from the peritoneal cavity. Those formed in the caudal lymph nodes of subcutaneously infected rats are delivered to the thoracic duct and hence to the blood from where they are drawn into exudates. Immunoblasts are the most immature members of this protective cell population and they alone among the cells in central lymph localize in exudates induced by killed bacteria. They do so in substantial numbers, but only during the early postinduction period. The "homing" of immunoblasts to inflammatory foci seems to be determined by a general property of the cells rather than their immunological commitment; however, the intense inflammation induced by organisms to which an animal has been specifically sensitized is accompanied by an exuberant influx of immunoblasts into lesions. Sensitized lymphocytes that extravasate in the inflamed peritoneal may generate more of their own kind, but some give rise to small lymphocytes. The latter also have protective properties and, with time, comprise an increasing portion of the protective cell population. The results imply that the tissue disposition of sensitized lymphocytes in the body is determined by a complementary relationship between blood-borne immunoblasts and vascular endothelium in inflamed tissue. The results also provide a plausible explanation for the concentration of sensitized lymphocytes at sites of microbial implantation where they alone would be expected to collaborate with monocyte-derived macrophages in the control of infection.

Full Text

The Full Text of this article is available as a PDF (940.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter B. J., Schendel D. J., Bach M. L., Bach F. H., Klein J., Stimpfling J. H. Cell-mediated lympholysis. Importance of serologically defined H-2 regions. J Exp Med. 1973 May 1;137(5):1303–1309. doi: 10.1084/jem.137.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach F. H., Segall M., Zier K. S., Sondel P. M., Alter B. J., Bach M. L. Cell mediated immunity: separation of cells involved in recognitive and destructive phases. Science. 1973 Apr 27;180(4084):403–406. doi: 10.1126/science.180.4084.403. [DOI] [PubMed] [Google Scholar]
  3. Bloom B. R., Gaffney J., Jimenez L. Dissociation of MIF production and cell proliferation. J Immunol. 1972 Dec;109(6):1395–1398. [PubMed] [Google Scholar]
  4. CAFFREY R. W., RIEKE W. O., EVERETT N. B. Radioautographic studies of small lymphocytes in the thoracic duct of the rat. Acta Haematol. 1962;28:145–154. doi: 10.1159/000207257. [DOI] [PubMed] [Google Scholar]
  5. EVERETT N. B., CAFFREY R. W., RIEKE W. O. RECIRCULATION OF LYMPHOCYTES. Ann N Y Acad Sci. 1964 Feb 28;113:887–897. doi: 10.1111/j.1749-6632.1964.tb40710.x. [DOI] [PubMed] [Google Scholar]
  6. GOWANS J. L., KNIGHT E. J. THE ROUTE OF RE-CIRCULATION OF LYMPHOCYTES IN THE RAT. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:257–282. doi: 10.1098/rspb.1964.0001. [DOI] [PubMed] [Google Scholar]
  7. GOWANS J. L. The fate of parental strain small lymphocytes in F1 hybrid rats. Ann N Y Acad Sci. 1962 Oct 24;99:432–455. doi: 10.1111/j.1749-6632.1962.tb45326.x. [DOI] [PubMed] [Google Scholar]
  8. Kano S., Bloom B. R., Howe M. L. Enumeration of activated thymus-derived lymphocytes by the virus plaque assay. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2299–2303. doi: 10.1073/pnas.70.8.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koster F. T., McGregor D. D., Mackaness G. B. The mediator of cellular immunity. II. Migration of immunologically committed lymphocytes into inflammatory exudates. J Exp Med. 1971 Feb 1;133(2):400–409. doi: 10.1084/jem.133.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koster F. T., McGregor D. D. The mediator of cellular immunity. 3. Lymphocyte traffic from the blood into the inflamed peritoneal cavity. J Exp Med. 1971 Apr 1;133(4):864–876. doi: 10.1084/jem.133.4.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mackaness G. B. Resistance to intracellular infection. J Infect Dis. 1971 Apr;123(4):439–445. doi: 10.1093/infdis/123.4.439. [DOI] [PubMed] [Google Scholar]
  13. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGregor D. D., Koster F. T., Mackaness G. B. The mediator of cellular immunity. I. The life-span and circulation dynamics of the immunologically committed lymphocyte. J Exp Med. 1971 Feb 1;133(2):389–399. doi: 10.1084/jem.133.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGregor D. D., Koster F. T. The mediator of cellular immunity. IV. Cooperation between lymphocytes and mononuclear phagocytes. Cell Immunol. 1971 Aug;2(4):317–325. doi: 10.1016/0008-8749(71)90066-9. [DOI] [PubMed] [Google Scholar]
  16. McGregor D. D., Logie P. S. The mediator of cellular immunity. VI. Effect of the antimitotic drug vinblastine on the mediator of cellular resistance to infection. J Exp Med. 1973 Mar 1;137(3):660–674. doi: 10.1084/jem.137.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore A. R., Hall J. G. Nonspecific entry of thoracic duct immunoblasts into intradermal foci of antigens. Cell Immunol. 1973 Jul;8(1):112–119. doi: 10.1016/0008-8749(73)90098-1. [DOI] [PubMed] [Google Scholar]
  18. North R. J., Mackaness G. B., Elliott R. W. The histogenesis of immunologically committed lymphocytes. Cell Immunol. 1972 Apr;3(4):680–694. doi: 10.1016/0008-8749(72)90130-x. [DOI] [PubMed] [Google Scholar]
  19. Rocklin R. E. Production of migration inhibitory factor by non-dividing lymphocytes. J Immunol. 1973 Mar;110(3):674–678. [PubMed] [Google Scholar]
  20. Sprent J., Miller J. F. Activation of thymus cells by histocompatibility antigens. Nat New Biol. 1971 Sep 15;234(50):195–198. doi: 10.1038/newbio234195a0. [DOI] [PubMed] [Google Scholar]
  21. Stobo J. D. Phytohemagglutin and concanavalin A: probes for murine 'T' cell activivation and differentiation. Transplant Rev. 1972;11:60–86. doi: 10.1111/j.1600-065x.1972.tb00046.x. [DOI] [PubMed] [Google Scholar]
  22. TRESSELT H. B., WARD M. K. BLOOD-FREE MEDIUM FOR THE RAPID GROWTH OF PASTEURELLA TULARENSIS. Appl Microbiol. 1964 Nov;12:504–507. doi: 10.1128/am.12.6.504-507.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagner H. The correlation between the proliferative and the cytotoxic responses of mouse lymphocytes to allogeneic cells in vitro. J Immunol. 1972 Sep;109(3):630–637. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES