Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Oct 31;140(5):1364–1386. doi: 10.1084/jem.140.5.1364

EFFECTS OF CONCANAVALIN A ON MOUSE PERITONEAL MACROPHAGES

I. Stimulation of Endocytic Activity and Inhibition of Phago-Lysosome Formation

Paul J Edelson 1, Zanvil A Cohn 1
PMCID: PMC2139725  PMID: 4278548

Abstract

Concanavalin A (Con A) binds to saccharide residues on the mouse peritoneal macrophage plasma membrane and stimulates extensive pinocytic interiorization of the membrane. The overall pinocytic rate is increased 3.5–4.5 times by the addition of Con A, and the surface marker enzyme adenosine triphosphatase can be identified histochemically in association with the cytoplasmic vesicles generated after exposure of the cells to Con A. Once formed, these pinocytic vesicles may persist for several days and fail to show morphologic evidence of fusion with primary or preformed secondary lysosomes. There is no apparent effect on the capacity of the macrophage to ingest either latex particles or IgG-coated SRBC administered either simultaneously with or subsequent to the Con A.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. M., Cook G. M., Poole A. R. Action of concanavalin A on the attachment stage of phagocytosis by macrophages. Exp Cell Res. 1971 Oct;68(2):466–467. doi: 10.1016/0014-4827(71)90178-9. [DOI] [PubMed] [Google Scholar]
  2. Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
  3. Axline S. G. Isozymes of acid phosphatase in normal and Calmette-Guérin bacillus-induced rabbit alveolar macrophages. J Exp Med. 1968 Nov 1;128(5):1031–1048. doi: 10.1084/jem.128.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berlin R. D. Effect of concanavalin A on phagocytosis. Nat New Biol. 1972 Jan 12;235(54):44–45. doi: 10.1038/newbio235044a0. [DOI] [PubMed] [Google Scholar]
  5. Bernhard W., Avrameas S. Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exp Cell Res. 1971 Jan;64(1):232–236. doi: 10.1016/0014-4827(71)90217-5. [DOI] [PubMed] [Google Scholar]
  6. Bächi T., Aguet M., Howe C. Fusion of erythrocytes by Sendai virus studied by immuno-freeze-etching. J Virol. 1973 Jun;11(6):1004–1012. doi: 10.1128/jvi.11.6.1004-1012.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edelman G. M., Cunningham B. A., Reeke G. N., Jr, Becker J. W., Waxdal M. J., Wang J. L. The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2580–2584. doi: 10.1073/pnas.69.9.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edelson P. J., Cohn Z. A. Effects of concanavalin A on mouse peritoneal macrophages. II. Metabolism of endocytized proteins and reversibility of the effects by mannose. J Exp Med. 1974 Nov 1;140(5):1387–1403. doi: 10.1084/jem.140.5.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fedorko M. E., Hirsch J. G., Fried B. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. II. Kinetic features and metabolic requirements. Exp Cell Res. 1971 Dec;69(2):313–323. doi: 10.1016/0014-4827(71)90230-8. [DOI] [PubMed] [Google Scholar]
  11. Fedorko M. E., Hirsch J. G. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. I. Morphologic aspects. Exp Cell Res. 1971 Nov;69(1):113–127. doi: 10.1016/0014-4827(71)90317-x. [DOI] [PubMed] [Google Scholar]
  12. GOLDSTEIN I. J., HOLLERMAN C. E., SMITH E. E. PROTEIN-CARBOHYDRATE INTERACTION. II. INHIBITION STUDIES ON THE INTERACTION OF CONCANAVALIN A WITH POLYSACCHARIDES. Biochemistry. 1965 May;4:876–883. doi: 10.1021/bi00881a013. [DOI] [PubMed] [Google Scholar]
  13. Gordon S., Cohn Z. Macrophage-melanocyte heterokaryons. I. Preparation and properties. J Exp Med. 1970 May 1;131(5):981–1003. doi: 10.1084/jem.131.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  15. Hirsch J. G., Fedorko M. E. Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and "postfixation" in uranyl acetate. J Cell Biol. 1968 Sep;38(3):615–627. doi: 10.1083/jcb.38.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones T. C., Hirsch J. G. The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J Exp Med. 1972 Nov 1;136(5):1173–1194. doi: 10.1084/jem.136.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lutton J. D. The effect of phagocytosis and spreading on macrophage surface receptors for concanavalin A. J Cell Biol. 1973 Feb;56(2):611–617. doi: 10.1083/jcb.56.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pauli R. M., DeSalle L., Higgins P., Henderson E., Norin A., Strauss B. Proliferation of stimulated human peripheral blood lymphocytes: preferential incorporation of concanavalin A by stimulated cells and mitogenic activity. J Immunol. 1973 Aug;111(2):424–432. [PubMed] [Google Scholar]
  20. Romeo D., Zabucchi G., Rossi F. Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by concanavalin A. Nat New Biol. 1973 May 23;243(125):111–112. [PubMed] [Google Scholar]
  21. Smith C. W., Goldman A. S. Macrophages from human colostrum. Multinucleated giant cell formation by phytohemagglutinin and concanavalin A. Exp Cell Res. 1971 Jun;66(2):317–320. doi: 10.1016/0014-4827(71)90683-5. [DOI] [PubMed] [Google Scholar]
  22. Smith S. B., Revel J. P. Mapping of concanavalin A binding sites on the surface of several cell types. Dev Biol. 1972 Mar;27(3):434–441. doi: 10.1016/0012-1606(72)90183-2. [DOI] [PubMed] [Google Scholar]
  23. Steinman R. M., Cohn Z. A. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J Cell Biol. 1972 Oct;55(1):186–204. doi: 10.1083/jcb.55.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sumner J. B., Howell S. F. Identification of Hemagglutinin of Jack Bean with Concanavalin A. J Bacteriol. 1936 Aug;32(2):227–237. doi: 10.1128/jb.32.2.227-237.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Werb Z., Cohn Z. A. Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles. J Biol Chem. 1972 Apr 25;247(8):2439–2446. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES