Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Oct 31;140(5):1245–1259. doi: 10.1084/jem.140.5.1245

MACROPHAGE-LYMPHOCYTE CLUSTERS IN THE IMMUNE RESPONSE TO SOLUBLE PROTEIN ANTIGEN IN VITRO

I. Roles of Lymphocytes and Macrophages in Cluster Formation

Ole Werdelin 1, Otto Brændstrup 1, Eskild Pedersen 1
PMCID: PMC2139727  PMID: 4138693

Abstract

We have studied the physical interaction between macrophages and lymphocytes during the immune response to purified protein derivative of tuberculin (PPD) in vitro. Mixtures of peritoneal macrophages and lymph node lymphocytes from guinea pigs immunized with tubercle bacilli formed cell clusters during 20 h of culture with PPD. The number of clusters produced was correlated to the number of immune lymphocytes in the cultures. Peritoneal macrophages which had been pulsed with PPD and untreated lymph node lymphocytes produced cell clusters in the absence of free PPD in numbers equivalent to those produced by the same cells in the presence of free PPD. In cultures containing a mixture of PPD-pulsed macrophages, not-pulsed macrophages, and immune lymphocytes with no free PPD, cell clusters developed mainly between the antigen-pulsed macrophages and lymphocytes. Cluster formation was antigen-specific with the specificity residing in the lymphocytes, mainly or exclusively in the T lymphocytes. These data indicate that in the process of cell cluster formation macrophages serve as antigen-binding (or -processing) cells, while a subpopulation of lymphocytes interact physically and specifically with the macrophages.

Full Text

The Full Text of this article is available as a PDF (881.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cline M. J., Swett V. C. The interaction of human monocytes and lymphocytes. J Exp Med. 1968 Dec 1;128(6):1309–1325. doi: 10.1084/jem.128.6.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVID J. R., AL-ASKARI S., LAWRENCE H. S., THOMAS L. DELAYED HYPERSENSITIVITY IN VITRO. I. THE SPECIFICITY OF INHIBITION OF CELL MIGRATION BY ANTIGENS. J Immunol. 1964 Aug;93:264–273. [PubMed] [Google Scholar]
  3. DAVID J. R., LAWRENCE H. S., THOMAL L. DELAYED HYPERSENSITIVITY IN VITRO. II. EFFECT OF SENSITIVE CELLS ON NORMAL CELLS IN THE PRESENCE OF ANTIGEN. J Immunol. 1964 Aug;93:274–278. [PubMed] [Google Scholar]
  4. DAVID J. R., LAWRENCE H. S., THOMAS L. DELAYED HYPERSENSITIVITY IN VITRO. 3. THE SPECIFICITY OF HAPTEN-PROTEIN CONJUGATES IN THE INHIBITION OF CELL MIGRATION. J Immunol. 1964 Aug;93:279–282. [PubMed] [Google Scholar]
  5. Harris G. Studies of the mechanism of antigen stimulation of DNA synthesis in rabbit spleen cultures. Immunology. 1965 Dec;9(6):529–541. [PMC free article] [PubMed] [Google Scholar]
  6. Lake W. W., Bice D., Schwartz H. J., Salvaggio J. Suppression of in vitro antigen-induced lymphocyte transformation by carrageenan, a macrophage-toxic agent. J Immunol. 1971 Dec;107(6):1745–1751. [PubMed] [Google Scholar]
  7. Lolekha S., Dray S., Gotoff S. P. Macrophage aggregation in vitro: a correlate of delayed hypersensitivity. J Immunol. 1970 Feb;104(2):296–304. [PubMed] [Google Scholar]
  8. Oppenheim J. J., Leventhal B. G., Hersh E. M. The transformation of column-purified lymphocytes with nonspecific and specific antigenic stimuli. J Immunol. 1968 Aug;101(2):262–267. [PubMed] [Google Scholar]
  9. Oppenheim J. J., Leventhal B. G., Hersh E. M. The transformation of column-purified lymphocytes with nonspecific and specific antigenic stimuli. J Immunol. 1968 Aug;101(2):262–267. [PubMed] [Google Scholar]
  10. Oppenheim J. J. Relationship of in vitro lymphocyte transformation to delayed hypersensitivity in guinea pigs and man. Fed Proc. 1968 Jan-Feb;27(1):21–28. [PubMed] [Google Scholar]
  11. PEARMAIN G., LYCETTE R. R., FITZGERALD P. H. Tuberculin-induced mitosis in peripheral blood leucocytes. Lancet. 1963 Mar 23;1(7282):637–638. doi: 10.1016/s0140-6736(63)91275-3. [DOI] [PubMed] [Google Scholar]
  12. Rosenthal A. S., Davie J. M., Rosenstreich D. L., Blake J. T. Depletion of antibody-forming cells and their precursors from complex lymphoid cell populations. J Immunol. 1972 Jan;108(1):279–281. [PubMed] [Google Scholar]
  13. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Salvin S. B., Nishio J. Communications. "In vitro" cell reactions in delayed hypersensitivity. J Immunol. 1969 Jul;103(1):138–141. [PubMed] [Google Scholar]
  15. Salvin S. B., Sell S., Nishio J. Activity in vitro of lymphocytes and macrophages in delayed hypersensitivity. J Immunol. 1971 Sep;107(3):655–662. [PubMed] [Google Scholar]
  16. Schechter G. P. McFarland W,+MACFARLAND W: Interaction of lymphocytes and a radioresistant cell in PPD-stimulated human leukocyte cultures. J Immunol. 1970 Sep;105(3):661–669. [PubMed] [Google Scholar]
  17. Seeger R. C., Oppenheim J. J. Synergistic interaction of macrophages and lymphocytes in antigen-induced transformation of lymphocytes. J Exp Med. 1970 Jul 1;132(1):44–65. doi: 10.1084/jem.132.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shevach E. M., Rosenthal A. S. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J Exp Med. 1973 Nov 1;138(5):1213–1229. doi: 10.1084/jem.138.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Waldron J. A., Jr, Horn R. G., Rosenthal A. S. Antigen-induced proliferation of guinea pig lymphocytes in vitro: obligatory role of macrophages in the recognition of antigen by immune T-lymphocytes. J Immunol. 1973 Jul;111(1):58–64. [PubMed] [Google Scholar]
  20. Ward P. A., Remold H. G., David J. R. Leukotactic factor produced by sensitized lymphocytes. Science. 1969 Mar 7;163(3871):1079–1081. doi: 10.1126/science.163.3871.1079. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES