Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Nov 30;140(6):1696–1711. doi: 10.1084/jem.140.6.1696

HOST-PARASITE INTERACTION IN THE RAT RENAL PELVIS

A Possible Role for Pili in the Pathogenesis of Pyelonephritis

Fredric J Silverblatt 1
PMCID: PMC2139746  PMID: 4610081

Abstract

The initial interaction between bacteria and the renal pelvic epithelium may determine whether intrarenal infection occurs. A model of retrograde pyelonephritis was employed to study these events by electron microscopy. Female rats received an intravesicular inoculation of a 0.5-ml suspension of Proteus mirabilis containing 108 organisms. At intervals after inoculation, the kidneys were fixed by intravascular perfusion and the tissues were prepared for electron microscopy. During the first 24 h, increasing numbers of bacteria were seen to be attached by pili to the renal pelvic epithelial cells. The organism appeared to cross the mucosal barrier by several mechanisms: (a) penetration into the cytoplasm of intact epithelial cells, (b) passage between epithelial cells that were separated by excessive hydrostatic pressure generated during bladder inoculation, (c) passage across necrotic regions of the pelvis, and (d) translocation to the cortex by calicotubular backflow. Whereas at inoculation bacteria possessed pili 40 Å in diameter (type III pili) 24 h after reflux, the predominant type of pili measured 70 A in thickness (type IV pili). Repetitive subculture induced a similar transition in vitro. To assess the influence of pili type on virulence in this model, 80 rats were challenged with either type III or type IV pilated organisms and the frequency of rats with cortical abscesses were compared at 1 wk. A significantly greater number of rats inoculated with type IV pilated Proteus manifested macroscopic evidence of infection. These results suggest that pili play a role in the pathogenesis of ascending pyelonephritis.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN B. R., JACKSON G. G. Pyelitis, an important factor in the pathogenesis of retrograde pyelonephritis. J Exp Med. 1961 Sep 1;114:375–384. doi: 10.1084/jem.114.3.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amar A. D. Calicotubular backflow with vesicoureteral reflux. Relation to pyelonephritis. JAMA. 1970 Jul 13;213(2):293–294. [PubMed] [Google Scholar]
  3. BEESON P. B., GUZE L. B. Experimental pyelonephritis. I. Effect of ureteral ligation on the course of bacterial infection in the kidney of the rat. J Exp Med. 1956 Dec 1;104(6):803–815. doi: 10.1084/jem.104.6.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BRAUDE A. I., SIEMIENSKI J. Role of bacterial urease in experimental pyelonephritis. J Bacteriol. 1960 Aug;80:171–179. doi: 10.1128/jb.80.2.171-179.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boatman E. S., Lowe D. Photographic mapping of a tissue surface to locate fields for electron microscopy; mouse lung. Stain Technol. 1971 Mar;46(2):63–69. doi: 10.3109/10520297109067824. [DOI] [PubMed] [Google Scholar]
  6. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  7. Bryant R. E., Sutcliffe M. C., McGee Z. A. Effect of osmolalities comparable to those of the renal medulla on function of human polymorphonuclear leukocytes. J Infect Dis. 1972 Jul;126(1):1–10. doi: 10.1093/infdis/126.1.1. [DOI] [PubMed] [Google Scholar]
  8. CHERNEW I., BRAUDE A. I. Depression of phagocytosis by solutes in concentrations found in the kidney and urine. J Clin Invest. 1962 Oct;41:1945–1953. doi: 10.1172/JCI104652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. COTRAN R. S., THRUPP L. D., HAJJ S. N., ZANGWILL D. P., VIVALDI E., KASS E. H. Retrograde E. coli pyelonephritis in the rat: a bacteriologic, pathologic, and fluorescent antibody study. J Lab Clin Med. 1963 Jun;61:987–1004. [PubMed] [Google Scholar]
  10. COTRAN R. S., VIVALDI E., ZANGWILL D. P., KASS E. H. Retrograde Proteus pyelonephritis in rats. Bacteriologic, pathologic and fluorescent-antibody studies. Am J Pathol. 1963 Jul;43:1–31. [PMC free article] [PubMed] [Google Scholar]
  11. DUGUID J. P. Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol. 1959 Aug;21:271–286. doi: 10.1099/00221287-21-1-271. [DOI] [PubMed] [Google Scholar]
  12. Ellen R. P., Gibbons R. J. Parameters affecting the adherence and tissue tropisms of Streptococcus pyogenes. Infect Immun. 1974 Jan;9(1):85–91. doi: 10.1128/iai.9.1.85-91.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fierer J., Talner L., Braude A. I. Bacteremia in the pathogenesis of retrograde E. coli pyelonephritis in the rat. Am J Pathol. 1971 Aug;64(2):443–456. [PMC free article] [PubMed] [Google Scholar]
  14. Gibbons R. J., van Houte J. Selective bacterial adherence to oral epithelial surfaces and its role as an ecological determinant. Infect Immun. 1971 Apr;3(4):567–573. doi: 10.1128/iai.3.4.567-573.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HEPTINSTALL R. H. EXPERIMENTAL PYELONEPHRITIS. BACTERIOLOGICAL AND MORPHOLOGICAL STUDIES ON THE ASCENDING ROUTE OF INFECTION IN THE RAT. Nephron. 1964;1:73–92. doi: 10.1159/000179321. [DOI] [PubMed] [Google Scholar]
  16. Henrichsen J., Froholm L. O., Bovre K. Studies on bacterial surface translocation. 2. Correlation of twitching motility and fimbriation in colony variants of Moraxella nonliquefaciens, M. bovis, and M. kingii. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(3):445–452. [PubMed] [Google Scholar]
  17. Huber J. D., Parker F., Odland G. F. A basic fuchsin and alkalinized methylene blue rapid stain for epoxy-embedded tissue. Stain Technol. 1968 Mar;43(2):83–87. doi: 10.3109/10520296809115048. [DOI] [PubMed] [Google Scholar]
  18. Jones G. W., Rutter J. M. Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infect Immun. 1972 Dec;6(6):918–927. doi: 10.1128/iai.6.6.918-927.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Labrec E. H., Schneider H., Magnani T. J., Formal S. B. EPITHELIAL CELL PENETRATION AS AN ESSENTIAL STEP IN THE PATHOGENESIS OF BACILLARY DYSENTERY. J Bacteriol. 1964 Nov;88(5):1503–1518. doi: 10.1128/jb.88.5.1503-1518.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacLaren D. M. The significance of urease in proteus pyelonephritis: a histological and biochemical study. J Pathol. 1969 Jan;97(1):43–49. doi: 10.1002/path.1710970107. [DOI] [PubMed] [Google Scholar]
  21. Ofek I., Beachey E. H., Bisno A. L. Resistance of Neisseria gonorrhoeae to phagocytosis: relationship to colonial morphology and surface pili. J Infect Dis. 1974 Mar;129(3):310–316. doi: 10.1093/infdis/129.3.310. [DOI] [PubMed] [Google Scholar]
  22. Ogawa H., Nakamura A., Nakaya R. Cinemicrographic study of tissue cell cultures infected with Shigella flexneri. Jpn J Med Sci Biol. 1968 Aug;21(4):259–273. doi: 10.7883/yoken1952.21.259. [DOI] [PubMed] [Google Scholar]
  23. Punsalang A. P., Jr, Sawyer W. D. Role of pili in the virulence of Neisseria gonorrhoeae. Infect Immun. 1973 Aug;8(2):255–263. doi: 10.1128/iai.8.2.255-263.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ROCHA H., FEKETY F. R., Jr ACUTE INFLAMMATION IN THE RENAL CORTEX AND MEDULLA FOLLOWING THERMAL INJURY. J Exp Med. 1964 Jan 1;119:131–138. doi: 10.1084/jem.119.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Silverblatt F. J. Ultrastructure of the renal pelvic epithelium of the rat. Kidney Int. 1974 Mar;5(3):214–220. doi: 10.1038/ki.1974.26. [DOI] [PubMed] [Google Scholar]
  26. Staley T. E., Jones E. W., Corley L. D. Attachment and penetration of Escherichia coli into intestinal epithelium of the ileum in newborn pigs. Am J Pathol. 1969 Sep;56(3):371–392. [PMC free article] [PubMed] [Google Scholar]
  27. Stossel T. P. Phagocytosis (third of three parts). N Engl J Med. 1974 Apr 11;290(15):833–839. doi: 10.1056/NEJM197404112901506. [DOI] [PubMed] [Google Scholar]
  28. Swanson J., Kraus S. J., Gotschlich E. C. Studies on gonococcus infection. I. Pili and zones of adhesion: their relation to gonococcal growth patterns. J Exp Med. 1971 Oct 1;134(4):886–906. doi: 10.1084/jem.134.4.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Swanson J. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med. 1973 Mar 1;137(3):571–589. doi: 10.1084/jem.137.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takeuchi A. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol. 1967 Jan;50(1):109–136. [PMC free article] [PubMed] [Google Scholar]
  31. Yanagawa R., Otsuki K., Tokui T. Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn J Vet Res. 1968 Mar;16(1):31–37. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES