Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Dec;169(12):5727–5734. doi: 10.1128/jb.169.12.5727-5734.1987

Nucleotide sequence of the Escherichia coli gene for lipid A disaccharide synthase.

D N Crowell 1, W S Reznikoff 1, C R Raetz 1
PMCID: PMC214086  PMID: 2824445

Abstract

The lpxB gene of Escherichia coli, believed to be the structural gene for lipid A disaccharide synthase, is located in the min 4 region of the chromosome. It is adjacent to and clockwise of the lpxA gene, which is thought to encode UDP-N-acetylglucosamine acyltransferase. Preliminary evidence suggests that lpxA and lpxB are cotranscribed in the clockwise direction and thus constitute part of a previously unknown operon (D. N. Crowell, M. S. Anderson, and C. R. H. Raetz, J. Bacteriol. 168:152-159, 1986). We now report the complete nucleotide sequence of a 1,522-base-pair PvuII-HincII fragment known to carry the lpxB gene. This sequence contained an open reading frame of 1,149 base pairs, in agreement with the predicted size, location, and orientation of lpxB. There was a second open reading frame 5' to, and in the same orientation as, lpxB that corresponded to lpxA. The ochre codon terminating lpxA was shown to overlap the methionine codon identified as the initiation codon for lpxB, suggesting that these genes are cotranscribed and translationally coupled. A third open reading frame was also shown to begin at the 3' end of lpxB with analogous overlap between the opal codon terminating lpxB and the methionine codon that putatively initiates translation downstream of lpxB in the clockwise direction. These results argue that at least three genes constitute a translationally coupled operon in the min 4 region of the E. coli chromosome. The accompanying paper by Tomasiewicz and McHenry (J. Bacteriol. 169:5735-5744, 1987) presents 4.35 kilobases of DNA sequence, beginning at the 3' end of lpxB, and argues that dnaE and several other open reading frames may be members of this operon.

Full text

PDF
5727

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. S., Bulawa C. E., Raetz C. R. The biosynthesis of gram-negative endotoxin. Formation of lipid A precursors from UDP-GlcNAc in extracts of Escherichia coli. J Biol Chem. 1985 Dec 15;260(29):15536–15541. [PubMed] [Google Scholar]
  2. Anderson M. S., Raetz C. R. Biosynthesis of lipid A precursors in Escherichia coli. A cytoplasmic acyltransferase that converts UDP-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. J Biol Chem. 1987 Apr 15;262(11):5159–5169. [PubMed] [Google Scholar]
  3. Bulawa C. E., Raetz C. R. The biosynthesis of gram-negative endotoxin. Identification and function of UDP-2,3-diacylglucosamine in Escherichia coli. J Biol Chem. 1984 Apr 25;259(8):4846–4851. [PubMed] [Google Scholar]
  4. Burton Z. F., Gross C. A., Watanabe K. K., Burgess R. R. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell. 1983 Feb;32(2):335–349. doi: 10.1016/0092-8674(83)90453-1. [DOI] [PubMed] [Google Scholar]
  5. Casadaban M. J., Chou J., Cohen S. N. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. doi: 10.1128/jb.143.2.971-980.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crowell D. N., Anderson M. S., Raetz C. R. Molecular cloning of the genes for lipid A disaccharide synthase and UDP-N-acetylglucosamine acyltransferase in Escherichia coli. J Bacteriol. 1986 Oct;168(1):152–159. doi: 10.1128/jb.168.1.152-159.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dretzen G., Bellard M., Sassone-Corsi P., Chambon P. A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem. 1981 Apr;112(2):295–298. doi: 10.1016/0003-2697(81)90296-7. [DOI] [PubMed] [Google Scholar]
  9. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  10. Galanos C., Freudenberg M. A., Lüderitz O., Rietschel E. T., Westphal O. Chemical, physicochemical and biological properties of bacterial lipopolysaccharides. Prog Clin Biol Res. 1979;29:321–332. [PubMed] [Google Scholar]
  11. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson R. C., Yin J. C., Reznikoff W. S. Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell. 1982 Oct;30(3):873–882. doi: 10.1016/0092-8674(82)90292-6. [DOI] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  16. Morrison D. C., Ryan J. L. Bacterial endotoxins and host immune responses. Adv Immunol. 1979;28:293–450. doi: 10.1016/s0065-2776(08)60802-0. [DOI] [PubMed] [Google Scholar]
  17. Nishijima M., Bulawa C. E., Raetz C. R. Two interacting mutations causing temperature-sensitive phosphatidylglycerol synthesis in Escherichia coli membranes. J Bacteriol. 1981 Jan;145(1):113–121. doi: 10.1128/jb.145.1.113-121.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishijima M., Raetz C. R. Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol. J Biol Chem. 1981 Oct 25;256(20):10690–10696. [PubMed] [Google Scholar]
  19. Nishijima M., Raetz C. R. Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for phosphatidylglycerophosphate synthetase and construction of mutants lacking phosphatidylglycerol. J Biol Chem. 1979 Aug 25;254(16):7837–7844. [PubMed] [Google Scholar]
  20. Normark S., Bergström S., Edlund T., Grundström T., Jaurin B., Lindberg F. P., Olsson O. Overlapping genes. Annu Rev Genet. 1983;17:499–525. doi: 10.1146/annurev.ge.17.120183.002435. [DOI] [PubMed] [Google Scholar]
  21. Raetz C. R. Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet. 1986;20:253–295. doi: 10.1146/annurev.ge.20.120186.001345. [DOI] [PubMed] [Google Scholar]
  22. Ray B. L., Painter G., Raetz C. R. The biosynthesis of gram-negative endotoxin. Formation of lipid A disaccharides from monosaccharide precursors in extracts of Escherichia coli. J Biol Chem. 1984 Apr 25;259(8):4852–4859. [PubMed] [Google Scholar]
  23. Ray B. L., Raetz C. R. The biosynthesis of gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4'-phosphate of lipid A. J Biol Chem. 1987 Jan 25;262(3):1122–1128. [PubMed] [Google Scholar]
  24. Shepard D., Oberfelder R. W., Welch M. M., McHenry C. S. Determination of the precise location and orientation of the Escherichia coli dnaE gene. J Bacteriol. 1984 May;158(2):455–459. doi: 10.1128/jb.158.2.455-459.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Takayama K., Qureshi N., Mascagni P., Nashed M. A., Anderson L., Raetz C. R. Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. Complete structure of A diacyl GlcN-1-P found in a phosphatidylglycerol-deficient mutant. J Biol Chem. 1983 Jun 25;258(12):7379–7385. [PubMed] [Google Scholar]
  27. Tomasiewicz H. G., McHenry C. S. Sequence analysis of the Escherichia coli dnaE gene. J Bacteriol. 1987 Dec;169(12):5735–5744. doi: 10.1128/jb.169.12.5735-5744.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Welch M. M., McHenry C. S. Cloning and identification of the product of the dnaE gene of Escherichia coli. J Bacteriol. 1982 Oct;152(1):351–356. doi: 10.1128/jb.152.1.351-356.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES