Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Dec;169(12):5887–5890. doi: 10.1128/jb.169.12.5887-5890.1987

Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis.

B Poolman 1, B Bosman 1, J Kiers 1, W N Konings 1
PMCID: PMC214196  PMID: 2824452

Abstract

The decreased response of the energy metabolism of lactose-starved Streptococcus cremoris upon readdition of lactose is caused by a decrease of the glycolytic activity (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:1460-1468, 1987). The decrease in glycolysis is accompanied by a decrease in the activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase. The steady-state levels of pathway intermediates upon refeeding with lactose after various periods of starvation indicate that the decreased glycolysis is primarily due to diminished glyceraldehyde-3-phosphate dehydrogenase activity. Furthermore, quantification of the control strength exerted by glyceraldehyde-3-phosphate dehydrogenase on the overall activity of the glycolytic pathway shows that this enzyme can be significantly rate limiting in nongrowing cells.

Full text

PDF
5887

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. G., McKay L. L. In Vivo Cloning of lac Genes in Streptococcus lactis ML3. Appl Environ Microbiol. 1984 Feb;47(2):245–249. doi: 10.1128/aem.47.2.245-249.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  3. Iwami Y., Yamada T. Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Infect Immun. 1985 Nov;50(2):378–381. doi: 10.1128/iai.50.2.378-381.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  5. MAITRA P. K., ESTABROOK R. W. A FLUOROMETRIC METHOD FOR THE ENZYMIC DETERMINATION OF GLYCOLYTIC INTERMEDIATES. Anal Biochem. 1964 Apr;7:472–484. doi: 10.1016/0003-2697(64)90156-3. [DOI] [PubMed] [Google Scholar]
  6. Poolman B., Driessen A. J., Konings W. N. Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J Bacteriol. 1987 Dec;169(12):5597–5604. doi: 10.1128/jb.169.12.5597-5604.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Westerhoff H. V., Arents J. C. Two (completely) rate-limiting steps in one metabolic pathway? The resolution of a paradox using bacteriorhodopsin liposomes and the control theory. Biosci Rep. 1984 Jan;4(1):23–31. doi: 10.1007/BF01120820. [DOI] [PubMed] [Google Scholar]
  8. Westerhoff H. V., Groen A. K., Wanders R. J. Modern theories of metabolic control and their applications (review). Biosci Rep. 1984 Jan;4(1):1–22. doi: 10.1007/BF01120819. [DOI] [PubMed] [Google Scholar]
  9. van der Plas J., Hellingwerf K. J., Seijen H. G., Guest J. R., Weiner J. H., Konings W. N. Identification and localization of enzymes of the fumarate reductase and nitrate respiration systems of escherichia coli by crossed immunoelectrophoresis. J Bacteriol. 1983 Feb;153(2):1027–1037. doi: 10.1128/jb.153.2.1027-1037.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES