Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Oct;164(1):25–32. doi: 10.1128/jb.164.1.25-32.1985

Delineation of two distinct regulatory domains in the 5' region of the nar operon of Escherichia coli.

S Li, T Rabi, J A DeMoss
PMCID: PMC214206  PMID: 2995309

Abstract

A detailed restriction site map was determined for an 8.4-kilobase DNA fragment containing the 5' regulatory and promoter region of the nar operon of Escherichia coli. The 5' end of the nar operon was subcloned as a 2.5-kilobase fragment, and an intact nar operon was constructed from this subcloned fragment and an EcoRI fragment containing the remainder of the nar operon. A set of Bal 31 deletions extending into the 5' region of the intact operon was selected, mapped, and characterized. Based on the synthesis of the alpha and beta subunits of nitrate reductase in a nar::Tn5 mutant, three categories of deletions were found: (i) those which permitted normal expression, (ii) those which completely prevented expression, and (iii) those which permitted anaerobic expression of the operon but prevented any additional induction by nitrate. The nucleotide sequence was determined for a segment of the nar promoter region starting at one of the latter deletion end points and extending into the first structural gene of the operon. The position of the deletion end point relative to the translation start site for the first structural gene, narG, was defined by identifying the nucleotide sequence for the first 20 N-terminal amino acid residues of the alpha subunit of nitrate reductase. Deletions terminating 161 base pairs (bp) and approximately 200 bp upstream from the narG translation start site permitted anaerobic formation of nitrate reductase but interfered with the stimulation of nar operon expression by nitrate. A maximum size for the regulatory region was defined by two Tn5 insertions, which mapped approximately 550 bp 5' from the translation start site and did not interfere with the normal expression of nitrate reductase under anaerobic conditions with or without nitrate. We conclude that the nar operon 5' regulatory region is divided into two distinct regions: the 100 to 150 bp immediately 5' to the narG gene include a transcriptional start site and the signals necessary for anaerobic expression of the operon, and an adjacent region of 50 to 400 bp is required for the stimulation of operon expression by nitrate.

Full text

PDF
25

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerswald E. A., Ludwig G., Schaller H. Structural analysis of Tn5. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):107–113. doi: 10.1101/sqb.1981.045.01.019. [DOI] [PubMed] [Google Scholar]
  2. Bonnefoy-Orth V., Lepelletier M., Pascal M. C., Chippaux M. Nitrate reductase and cytochrome bnitrate reductase structural genes as parts of the nitrate reductase operon. Mol Gen Genet. 1981;181(4):535–540. doi: 10.1007/BF00428749. [DOI] [PubMed] [Google Scholar]
  3. Bouvier J., Patte J. C., Stragier P. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4139–4143. doi: 10.1073/pnas.81.13.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chippaux M., Bonnefoy-Orth V., Ratouchniak J., Pascal M. C. Operon fusions in the nitrate reductase operon and study of the control gene nir R in Escherichia coli. Mol Gen Genet. 1981;182(3):477–479. doi: 10.1007/BF00293938. [DOI] [PubMed] [Google Scholar]
  5. Cole S. T. Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Mar 1;122(3):479–484. doi: 10.1111/j.1432-1033.1982.tb06462.x. [DOI] [PubMed] [Google Scholar]
  6. DeMoss J. A. Role of the chlC gene in formation of the formate-nitrate reductase pathway in Escherichia coli. J Bacteriol. 1978 Feb;133(2):626–630. doi: 10.1128/jb.133.2.626-630.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunn T. M., Hahn S., Ogden S., Schleif R. F. An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5017–5020. doi: 10.1073/pnas.81.16.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwards E. S., Rondeau S. S., DeMoss J. A. chlC (nar) operon of Escherichia coli includes structural genes for alpha and beta subunits of nitrate reductase. J Bacteriol. 1983 Mar;153(3):1513–1520. doi: 10.1128/jb.153.3.1513-1520.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glaser J. H., DeMoss J. A. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. J Bacteriol. 1971 Nov;108(2):854–860. doi: 10.1128/jb.108.2.854-860.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaprálek F., Jechová E., Otavová M. Two sites of oxygen control in induced synthesis of respiratory nitrate reductase in Escherichia coli. J Bacteriol. 1982 Mar;149(3):1142–1145. doi: 10.1128/jb.149.3.1142-1145.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lambden P. R., Guest J. R. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol. 1976 Dec;97(2):145–160. doi: 10.1099/00221287-97-2-145. [DOI] [PubMed] [Google Scholar]
  15. McPherson M. J., Baron A. J., Pappin D. J., Wootton J. C. Respiratory nitrate reductase of Escherichia coli. Sequence identification of the large subunit gene. FEBS Lett. 1984 Nov 19;177(2):260–264. doi: 10.1016/0014-5793(84)81295-8. [DOI] [PubMed] [Google Scholar]
  16. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  17. Piette J., Nyunoya H., Lusty C. J., Cunin R., Weyens G., Crabeel M., Charlier D., Glansdorff N., Piérard A. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4134–4138. doi: 10.1073/pnas.81.13.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rondeau S. S., Hsu P. Y., DeMoss J. A. Construction in vitro of a cloned nar operon from Escherichia coli. J Bacteriol. 1984 Jul;159(1):159–166. doi: 10.1128/jb.159.1.159-166.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruiz-Herrera J., DeMoss J. A. Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction. J Bacteriol. 1969 Sep;99(3):720–729. doi: 10.1128/jb.99.3.720-729.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shaw D. J., Rice D. W., Guest J. R. Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. J Mol Biol. 1983 May 15;166(2):241–247. doi: 10.1016/s0022-2836(83)80011-4. [DOI] [PubMed] [Google Scholar]
  21. Showe M. K., DeMoss J. A. Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol. 1968 Apr;95(4):1305–1313. doi: 10.1128/jb.95.4.1305-1313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith H. O., Birnstiel M. L. A simple method for DNA restriction site mapping. Nucleic Acids Res. 1976 Sep;3(9):2387–2398. doi: 10.1093/nar/3.9.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stewart V., MacGregor C. H. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. doi: 10.1128/jb.151.2.788-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stewart V. Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1320–1325. doi: 10.1128/jb.151.3.1320-1325.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES